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Abstract
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data as systems vary. Sheaf cohomology is computed for several classical bifurcations, demonstrating its 
ability to detect and classify bifurcations.
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1. Introduction

Dynamical systems theory is the study of the structure of invariant sets, particularly those sets 
that govern the long-term behavior of a system. As a dynamical system is perturbed, the structure 
of these invariant sets can change qualitatively through bifurcation. The global asymptotic dy-
namics of a system can be described by the structure of its attractors. Indeed, in his fundamental 
decomposition theorem, Conley uses the set of all attractors in a system to establish a global 
decomposition into minimal (chain)-recurrent components and connecting orbits between them 
[1]. The algebraic structure that underlies this decomposition is codified in the fact that the set of 
all attractors naturally forms a bounded, distributive lattice [2,3]. In a series of papers [2–7] the 
theoretical framework for such dynamically meaningful algebraic structures has been developed. 
This framework has been used to design algorithms to compute global dynamical information 
rigorously for explicit systems [8–13] as well as models obtained from data [14–19].

These dynamical structures, such as the lattice of attractors, have two important characteris-
tics.

1. They are algebraic invariants of the dynamics, and hence they are amenable to computations.
2. They are comprised of isolated invariant sets, and hence have isolating neighborhoods which 

are robust under perturbation.

Indeed, for a parametrized family of dynamical systems, invariant sets can be extremely com-
plicated and can exhibit dramatic changes on all scales with respect to parameters. In fact the 
level of complexity is such that their identification or classification is intractable from countable 
information [20]. However, isolated invariant sets have a continuation property with respect to 
perturbation of the system [1,21].

The aims of this paper are twofold. First we cast the algebraic structures into a categorical 
framework in which to develop a sheaf-theoretic description of continuation. Continuation of 
isolated invariant sets has been the central theme in Conley index theory. Conley [1] and Mont-
gomery [21], and later Salamon [22], formulate continuation in terms of the space of isolated 
invariant sets:

�[Isol] :=
{
(φ,S)

∣∣ φ a flow on X and S an isolated invariant set for φ
}
.

Two pairs are “close” in the space of isolated invariant sets if the flows are “close” and the 
isolated invariant sets share a common isolating neighborhood. Two isolated invariant sets are 
related by continuation if they lie in the same quasicomponent of the space of isolated invariant 
sets. Both Montgomery and Salamon give proofs of the following crucial result:

Two invariant sets related by continuation share the same Conley index.

Montgomery proves this in the language of étalé spaces (sheaf theory). By choosing an appro-
priate topology on �[Isol], the map

(φ,S)
π
�−� φ,

where the flow φ is an element of a topological space of flows on X, is a local homeomorphism. 
In this paper we expand Montgomery’s construction to algebraic structures of global dynam-
ics: lattices of attractors, repellers, and Morse representations. The latter provides an algebraic 
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alternative to the classical approach of labeling Morse sets. Instead, Morse decompositions are 
formulated as order embeddings [6, Def. 7]. Applying our sheaf-theoretic approach now provides 
a generalization of Franzosa’s theory of continuation of Morse decompositions, cf. [23,24]. By 
building a categorical framework, we have a natural way to study continuation of these algebraic 
structures systematically and simultaneously.

Continuation, formulated in terms of étalé spaces for these structures, carries information 
about bifurcations in parametrized systems. The second aim of this paper is to demonstrate that 
the sheaf cohomology obtained from these spaces can be used to define new invariants. We 
investigate sheaf cohomology in the setting of bifurcation theory as an illustration.

For a topological space � we define a parametrized dynamical system on X as a continuous 
map φ : T × X × � �X such that φλ := φ(·, ·, λ) is dynamical system on X for all λ ∈ �. The 

map λ 
φ∗
�−� φλ, called the transpose, is a continuous map without additional assumptions on the 

topological spaces � and X.
In Section 8.2 we show that the continuation of attractors is conjugacy invariant.

Theorem. (Conjugacy Invariance Theorem, cf. Theorem 8.7) Let X, Y be compact metric spaces. 
Suppose φ∗ : � � DS(T , X) and ψ∗ : � � DS(T , Y) are conjugate parametrized dynamical 
systems. Then, the étalé spaces φ−1∗ �[Att] and ψ−1∗ �[Att] are homeomorphic.

Remark 1.1. One can generalize this: a morphism of parametrized dynamical systems on com-
pact Hausdorff spaces yields a morphism of étalé spaces. This requires formulating morphisms 
of parametrized dynamical systems, which we leave for future work.

In Section 9 continuation sheaves are applied to bifurcations. In terms of sheaf cohomology 
with respect to the attractor sheaf, Aφ∗ , we obtain the following result:

Theorem. (cf. Theorem 9.14) Let � be both contractible and locally contractible, and let �′ ⊂ �

be a deformation retract of �, containing no bifurcation points for φ∗. Suppose that

Hk(�,�′;Aφ∗) �= 0, for some k � 0.

Then, there exists a bifurcation point in λ0 ∈ � ��′.

In Section 10 attractor sheaf cohomology is computed for the pitchfork, saddle-node, tran-
scritical, and S-shaped bifurcations. As an example, we obtain the following theorem for the 
pitchfork bifurcation, see Fig. 1.

Theorem. (cf. Theorem 10.7) Let φ∗ be a parametrized dynamical system over R with a pitchfork 
bifurcation at λ0. Then,

Aφ∗ is acyclic and H 0(�;Aφ∗) ∼= Z3
2.

Moreover, there exists a value λ0 ∈R such that

Hk
(
�,�′;Aφ∗)∼=

{
Z2

2 if k = 1 and a > λ0;
0 if k �= 1 or a � λ0,
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∞

−∞

0
�

X

�′
U

Fig. 1. In the pitchfork bifurcation, the section on �′ ⊂ � defined by σ(λ) = (
λ, φλ, ωφλ(U)

)
fails to extend globally. 

The omega limit set ωφλ(U), cf. Eqn. (2), is the singleton set containing the negative attracting fixed point in this 
example.

where �′ = [a, ∞). Furthermore, for �′ := (−∞, a], then Hk
(
�, �′; Aφ∗

) ∼= 0 for all k and 
for all a ∈ R.

Different types of bifurcations can have different cohomology in their attractor sheaves, but if 
two systems experience the same type of bifurcation, the cohomology is isomorphic. We propose 
this as a tool for classifying bifurcations, in much the same way singular homology classifies 
topological spaces. With the strides made in computational dynamics and the success of sheaf 
theory in topological data analysis, we believe this invariant to be computable by utilizing tools 
such as the existing theory for combinatorial dynamics [5,8] and cellular sheaf cohomology [25]. 
This will be the subject of future work.

1.1. Outline

Here with give an overview of the contents the paper. The reader may refer to the table of 
notation in the Appendix, which also contains additional technical background.

In a series of papers, cf. [2,5,6], we developed an algebraic theory of attractors via distributive 
lattice theory. We use attractors as the starting point of our approach, which is summarized in 
Diagram 1.

ANbhd(φ) RNbhd(φ)

Att(φ) Rep(φ)

ωφ

c

αφ

∗

ANbhd RNbhd

Att Rep

ω

c

α

∗

�[ANbhd] �[RNbhd]

�[Att] �[Rep]
�[ω]

�[c]

�[α]
�[∗]

(1)

The left diagram, which was established in [2, Diag. (1)], describes the relationship between 
lattices of attractors and attracting neighborhoods and dually the lattices of repellers and re-
pelling neighborhoods. The ω-limit set and α-limit set operations are lattice homomorphisms. In 
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Fig. 2. Given a parametrized dynamical system φ∗, we construct an étalé space of attractors φ−1∗ �[Att] over parameter 
space, cf. Sect. 10.1.2. The fiber at a parameter value λ ∈ � is the attractor lattice of φλ. Global sections are illustrated 
by dotted lines. The failure of these global sections to reach all attractors can be measured using sheaf cohomology.

Section 3, we cast these lattices as functors over the category of dynamical systems with ω, α
as natural transformations, as shown in the middle diagram. Finally, in Section 5, associated 
étalé spaces and morphisms are generated as in the right diagram.

In particular, the space �[Att] is the space of points (φ, A), where A ∈ Att(φ) is an attractor, 
which allows us to define a sheaf of attractors over the space of dynamical systems, cf. Fig. 2.

The focus of this paper is to construct and study sheaves which encode the continuation of 
structures in dynamics. The first seven sections of the paper detail an abstract approach to build-
ing sheaves for an arbitrary structure. We routinely return to attractors to showcase how this 
approach may be applied.

• In Section 2 the set of dynamical systems is equipped with the compact-open topology and 
then with a categorical structure using the notion of topological conjugacies. This yields the 
domain category for dynamical structures to be cast as functors and a topology with which 
to attach algebraic information and sheaves.

• In Section 3 the attracting neighborhood lattice ANbhd(φ) and the attractor lattice Att(φ)

are explicitly expressed as functors from the category of dynamical systems to a category of 
lattices. These constitute an example to which we apply the later theory.

• In Section 4 prerequisites for continuation are developed: a category with a topology on 
the objects and a pair of functors, which together we call a continuation frame. We prove 
the existence of an étalé space encoding continuation for these functors. The end of the 
section constructs morphisms of the étalé spaces using natural transformations between the 
corresponding functors.

• In Section 5 the framework built in Section 4 is applied to the attractor case from Sec-
tion 3. This yields the étalé space of attractors. Furthermore, we formulate a morphism of 
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étalé spaces from the dual repeller operator, seen in Diagram 1. Lastly, we describe the func-
torial setup for finite sublattices of attractors and Morse representations. This will eventually 
define a Morse representation sheaf.

• In Section 6 we augment the étalé spaces for attractors, repellers, etc. developed in Section 4
with their algebraic structures.
We begin by equipping the attractor and repeller étalé spaces with the binary lattice opera-
tions. Then, the Conley form on attractors is stated on the level of the attractor étalé space. 
Later, when we discuss sheaf cohomology, the Conley form will be a crucial tool in build-
ing sheaves in an abelian category. The end of Section 6 expands on this, detailing how the 
algebra of attractors can be stored in a ring.

• In Section 7.2 we use the equivalence between étalé spaces and sheaves. From an abstract 
continuation frame we build a sheaf which encodes the continuation of the unstable struc-
ture. The attractor functor begets an attractor lattice sheaf, and the Conley form becomes a 
morphism of sheaves. We also discuss the functors built at the end of Section 6, which give 
us Ring-valued sheaves storing the continuation of attractors. To conclude the section we 
consider the sheaf of finite attractor sublattices, and the sheaf of Morse representations, as 
set up in Section 5.

Finally, in Sections 8, 9, and 10 we apply the theory to the setting of parametrized families 
of dynamical systems, develop the theoretical foundation for studying bifurcation with sheaf 
cohomology, and compute the sheaf cohomology for some standard, 1-dimensional bifurcations, 
cf. Fig. 5.

2. Categories of dynamical systems

Throughout this paper we use the following definition of dynamical system. We give spaces 
of dynamical systems a categorical as well as a topological structure as outlined below.

Definition 2.1. Let (X, T ) be a topological space and let T be the (additive) topological monoid 
(or group) with topology TT . A dynamical system is a continuous map φ : T × X� X that 
satisfies

(i) φ(0, x) = x for all x ∈ X;
(ii) φ(t, φ(s, x)) = φ(t + s, x) for all s, t ∈ T and all x ∈ X.

The set of all dynamical systems on the phase space X with time space T is denoted by 
DS(T , X). Also, φ(t, x) may be denoted φt(x).

The time space T is either Z, Z+, R, or R+. In applications, for example those arising 
from differential equations, it is common for the topology on T = R (or R+) to be the standard 
topology, which we assume throughout the rest of this paper, but certain results do not require 
the topology TT to have specific properties. Certain properties of the phase space topology T
do play a crucial role. In particular, for clarity of the presentation of the main ideas of this paper, 
we always consider the phase space X to be a compact topological space. For some results, such 
as Theorem 8.7, we additionally assume a metric on X. Such restrictions are explicitly stated and 
explained when needed.
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We endow DS(T , X) with a suitable topology. One natural choice arises by viewing 
DS(T , X) as a function space with the compact-open topology, i.e. the topology generated by 
the subbasis of sets of the form

{
φ | φ(K) ⊂ U for K compact in T × X and U open in X

}
by varying pairs (K, U).

Next we endow DS(T , X) with a categorical structure and refer to DS(T , X) as the category 
of dynamical systems on X over T . An object φ ∈ ob(DS(T , X)) is a dynamical system φ : T ×
X�X. A morphism in hom(φ, ψ) is defined as τ × h such that

(i) h : X�X is a continuous map;
(ii) τ : T × X�T is a continuous reparametrization that is strictly monotone and bijective for 

each x and satisfies τ(0, x) = 0;
(iii) the following diagram commutes, cf. [26],

T × X X

T × X X

τ×h

φ

h

ψ

We refer to such a morphism τ × h as a (topological) quasiconjugacy. Note that hom(φ, ψ) can 
also be endowed with the compact-open topology, so that both the objects and the hom-set of 
DS(T , X) are topological spaces. We abuse notation so that an open subset � ⊂ ob(DS(T , X))

is referred to as an open set � in DS(T , X).

Remark 2.2. Note that the conditions on reparametrizations imply that τ = id in the case that 
T = Z, cf. [27, II(7.2)]. This in part motivates the terminology of quasiconjugacy. When T = R, 
the case h = id yields a reparametrization of time τ(t, x).

Remark 2.3. For special subsets of dynamical systems, such as smooth flows on a manifold, 
topologies other than the compact-open topology may be more appropriate. For clarity of pre-
sentation, we use the notation DS(T , X) to mean that the objects and morphisms of this category 
are given the compact-open topology. However, in other cases, similar results to those obtained 
for DS(T , X) follow from the abstract theory presented in Section 4.

Remark 2.4. More restrictive choices of the set of morphisms lead to subcategories. For exam-
ple, one may consider from least restrictive to most restrictive: topological (semi)equivalence 
with reparametrization of time, topological (semi)conjugacy, or no structure on the morphism 
set, i.e. hom(φ, φ) = {id × id} and hom(φ, ψ) = ∅ when φ �= ψ , cf. [26,28].

3. Functoriality of dynamics

The study of a dynamical system often focuses on the properties of its invariant sets. A subset 
S ⊂ X is invariant if it is the union of complete orbits, or equivalently φt(S) = S for all t ∈ T . 
One of the most important classes of invariant sets are the attractors. In [2], it is shown that the 
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set of attractors has the algebraic structure of a bounded, distributive lattice. In this section, we 
characterize such algebraic structures in terms of functors on the category of dynamical systems.

For a given dynamical system φ : T × X�X and a subset U ⊂ X, the maximal invariant set 
in U is

Invφ(U) :=
⋃

{S ⊂ U : φ(t, S) = S for all t ∈T+}.

The omega-limit set of U is defined by

ωφ(U) :=
⋂
t�0

cl
⋃
s�t

φs(U). (2)

Recall from [2] some properties of ωφ(U).

(i) ωφ(U) is compact, closed, and nonempty whenever U �= ∅,
(ii) ωφ(U) is an invariant set,2

(iii) ωφ

(
ωφ(U)

)= ωφ(U),
(iv) ωφ(clU) = ωφ(U),
(v) ωφ(U ∪ V ) = ωφ(U) ∪ ωφ(V ).

A subset U ⊂ X is called an attracting neighborhood if ωφ(U) ⊂ intU . Attracting neighbor-
hoods form a bounded, distributive lattice denoted by ANbhd(φ). The binary operations are ∩
and ∪, see [2]. A subset A ⊂ X is called an attractor if there exists an attracting neighborhood 
U ⊂ X such that A = ωφ(U), which is a neighborhood of A by definition. Attractors are com-
pact, closed invariant sets, and the set of all attractors is a bounded, distributive lattice Att(φ)

with binary operations: A ∨ A′ = A ∪ A′ and A ∧ A′ := ωφ(A ∩ A′), cf. [2].

Remark 3.1. In the above listed properties of omega-limit sets and attractors, the compactness 
of X is crucial. If we drop the compactness assumption on X, some of the properties, such as 
invariance and idempotency, do not hold in general.

When the spaces T , X are fixed, we often write DS in place of DS(T , X). The categorical 
structure of DS can now be used to reformulate the above lattices in terms of functors. For 
notational convenience we write ψ†

t := ψ(τ(t, ·), ·).

Lemma 3.2. Let φ, ψ ∈ ob(DS) and let τ × h ∈ hom(φ, ψ). Then, for all U ⊂ Y we have

φt (h
−1(U)) ⊂ h−1(ψ

†
t (U)) ∀t � 0.

In particular,

ωφ(h−1(U)) = ωφ(h−1(ωψ(U))) ⊂ h−1(ωψ(U)). (3)

Proof. See B. �
2 For a forward invariant set U , i.e. φt (U) ⊂ U for all t � 0, it holds that Invφ(clU) = ωφ(U).
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Now suppose we have τ × h ∈ hom(φ, ψ) and U ∈ ANbhd(ψ). Then, by Lemma 3.2,

ωφ(h−1(U)) ⊂ h−1(ωψ(U)) ⊂ h−1(int (U)) ⊂ int (h−1(U)),

where the latter inclusion follows from the continuity of h. Therefore h−1(U) ∈ ANbhd(φ), and 
the inverse image operator induces a well-defined map h−1 : ANbhd(ψ) � ANbhd(φ). This map 
is in fact a homomorphism by the properties of inverse images, since the lattice operations on 
ANbhd(φ) and ANbhd(ψ) are union and intersection, so using functor notation, ANbhd(τ ×h) =
h−1. Thus, by assigning to each dynamical system its attracting neighborhood lattice and to each 
morphism its inverse image operator, by the properties of inverse images and Lemma 3.2, we 
have a contravariant functor, ANbhd : DS� BDLat, from the category of dynamical systems to 
the category of bounded, distributive lattices.

Remark 3.3. A neighborhood U ∈ ANbhd(φ) is an attracting block if φt (clU) ⊂ int (U) for all 
t > 0. Now suppose τ × h ∈ hom(φ, ψ) and U ∈ ABlock(ψ). Then for all t > 0

φt

(
cl (h−1(U))

)⊂ φt

(
h−1(clU)

)⊂ h−1(ψ†
t (clU)

)
⊂ h−1(int (U)) ⊂ int (h−1(U)),

which implies that h−1(U) ∈ ABlock(φ) so that we can restrict h−1 to h−1 : ABlock(ψ) �
ABlock(φ). As before, ABlock(τ × h) = h−1. This makes ABlock : DS� BDLat a contravari-
ant functor. We will primarily use attracting neighborhoods, but Remark 5.4 demonstrates that 
restricting to attracting blocks does not change the theory.

A similar construction can be used to define a contravariant functor Att : DS� BDLat, but 
its action on morphisms must be modified, since the inverse image of an attractor need not be an 
attractor.

Proposition 3.4. Suppose τ ×h ∈ hom(φ, ψ) and A ∈ Att(ψ). Then ωφ(h−1(A)) ∈ Att(φ). More-
over, for τ × h ∈ hom(φ, ψ), the map ωφ ◦ h−1 : Att(ψ) � Att(φ) is a lattice homomorphism.

Proof. See B. �
Thus, by assigning each dynamical system its attractor lattice and each morphism τ × h ∈

hom(φ, ψ) the operator Att(τ × h) = ωφ ◦ h−1, we have a contravariant functor Att : DS�
BDLat.

Remark 3.5. If τ × h ∈ hom(φ, ψ) is a conjugacy, i.e. h : X� Y is a homeomorphism, then 
also τ−1 × h−1 ∈ hom(ψ, φ) is a conjugacy, where τ−1(s, y) is defined by s = τ(t, h−1(y)). As 
a consequence, A ∈ Att(φ) if and only if h(A) ∈ Att(ψ), cf. B.

Remark 3.6. Similar statements as in Lemma 3.2 also hold for α-limit sets, as defined in [4]. 
Therefore we can define functors RNbhd, RBlock : DS� BDLat for repelling neighborhoods 
and repelling blocks analogously. As for Att, one builds Rep : DS� BDLat by replacing ω with 
α. The details for these constructions are in C.
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Remark 3.7. In some situations it is useful to consider attracting neighborhoods in the algebra 
of regular closed sets using analogous constructions, cf. [5].

Remark 3.8. In the spirit of Montgomery one can also consider the semilattice of isolating neigh-
borhoods INbhd(φ) defined by the property φt(clU) ⊂ intU , cf. [21]. An isolated invariant set is 
obtained as the maximal invariant set of an isolating neighborhood: S = Invφ(U). The semilat-
tice of isolated invariant sets is denoted by Isol(φ), with S ∧ S′ = Invφ(S ∩ S′). As for attractors 
Invφ : INbhd(φ) � Isol(φ) is a semilattice homomorphism, and INbhd and Isol may be regarded 
as functors.

Given this functorial description of dynamical structures, we now turn to the primary focus of 
this paper, representing continuation of dynamical features in terms of sheaves over DS(T , X). 
To keep the underlying theory flexible, and so as not to repeat theoretical arguments, we first 
introduce the underlying concepts and theorems abstractly, and then apply this general theory in 
specific contexts.

4. Abstract continuation

Recall from the introduction that a fundamental feature of Conley theory is that an isolated 
invariant set continues under perturbation of a dynamical system, which leads to the concept 
of continuation of isolated invariant sets. In this section, we provide an abstract framework to 
expand the continuation property to algebraic structures of dynamics.

4.1. C-structures and categories of elements

Let D be a category such that ob(D) forms a topological space, and let C be a concrete
category, i.e. there exists a faithful functor, C � Set, into the category of sets. In applications D
is a category of dynamical systems equipped with a topology on ob(D), such as DS(T , X), and 
C is the category characterizing the algebraic structure of the dynamical feature to be continued, 
for example bounded, distributive lattices.

A C-valued contravariant functor on D is referred to as a C-structure on D. Let E, G : D �C
be C-structures and let w : E ⇒ G be a natural transformation. For objects φ ∈ ob(D) the functors 
E and G yield objects E(φ) and G(φ) in C and the component wφ of the natural transformation 
yields a morphism wφ : E(φ) � G(φ).

In applications, typically the functor G represents a dynamical feature such as attractors, and 
the functor E denotes a corresponding neighborhood feature such as attracting neighborhoods or 
attracting blocks.

Furthermore, we assume the existence of a constant, contravariant functor F : D �C, φ
F
�−� F0, 

referred to as the universe functor, for which there exists an injective natural transformation 
ι : E ⇒ F. In dynamics applications, when D = DS(T , X), the universe functor assigns to each 
φ a fixed subalgebra of the Boolean algebra Set(X), the power set of the phase space, or a 
fixed subalgebra of the Boolean algebra R(X), the regular closed subsets of X. For example, if 
E = ANbhd, the lattice of attracting neighborhoods, E(φ), is a sublattice of Set(X).

Now we have a span of functors and natural transformations F ι⇐= E w=⇒ G which are summa-
rized in the following diagrams:
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D C

E

F

ι D C

E

G

w (4)

Since C is a concrete category, we may regard a functor E into C as a Set-valued functor, and 
thus consider �[E], its category of elements, cf. [29,30]. The category of elements construction 
is used in the next section to generate an étalé space. To define the category of elements �[E], 
let ob(�[E]) be the set of all pairs (φ, U) such that φ ∈ ob(D) and U ∈ E(φ). The morphisms of 
�[E] are maps (φ, U) � (φ′, U ′) for which there is a D-morphism h : φ� φ′ with E(h)(U ′) =
U . The projection (φ, U) �� φ defines a canonical projection functor

π : �[E]�D.

Moreover, given a natural transformation between functors, w : E ⇒ G, we have the functor 
between the associated categories of elements

�[w] : �[E]��[G]
(φ,U) �� (φ,wφ(U)).

From the span of functors F ι⇐= E w=⇒ G we obtain a span of functors on the associated cate-
gories of elements:

�[F] �[ι]
�−−�[E] �[w]

−−−��[G]
(φ,U)�−− � (φ,U) �−−� (φ,wφ(U)).

(5)

Note that in (5), the set U ∈ E(φ). To localize �[E], for a fixed element U ∈ F0 we define the 
subcategory �[E; U ] via

ob
(
�[E;U ]) :=

{
(φ,U) ∈ ob(�[E]) | U ∈ E(φ)

}
with morphisms (φ, U) � (φ′, U) for which there is a D-morphism h : φ� φ′ with E(h)(U) =
U .

Applying the projection functor π yields a corresponding subcategory [E; U ] of D. The 
objects of [E; U ] are given by ob

(
[E; U ]) = {

φ ∈ ob(D) | U ∈ E(φ)
}

with morphisms 
h : φ� φ′ with E(h)(U) = U . This yields the following commutative diagrams:

�[E] D

�[E;U ] [E;U ]

π

⊂

π

⊂

�[G]

[E;U ] D

π
�[w;U ]

⊂

�[E;U ] �[G]

[E;U ]

�[w]

π
�[w;U ] (6)
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where �[w; U ](φ) := (
φ, wφ(U)

)
is called the partial section functor, which satisfies:

�[w;U ] ◦ π = �[w] and π ◦ �[w;U ] = id. (7)

We leave it to the reader to verify functoriality.

Remark 4.1. In settings where [E; U ] is a used as a subset of D we abuse notation and write 
φ ∈ [E; U ]. The same applies to open subsets � ⊂ D, cf. Sect. 2.

4.2. Continuation frames and étalé spaces

In the same way that ob(D) forms topological space, we will equip ob(�[G]) with a topology. 
This is done such that the functors �[w, U ] become continuous maps on objects. We will abuse 
notation and drop the ob(−) when referring to “elements of �[G].” A C-structure E : D � C is 
called stable if [E; U ] is open in D for all elements U ∈ F0. Otherwise a C-structure is said 
to be unstable. In the remainder of the paper we will always assume that E : D � C admits a 
universe F0 for which it is stable.

Definition 4.2. A C-continuation frame on D is a triple (G, E, w) consisting of C-structures 
E, G : D �C and a natural transformation w : E ⇒ G such that

(i) wφ : E(φ) � G(φ) is surjective for all φ ∈ ob(D);
(ii) E is a stable C-structure.

(iii) The sets 
{
φ ∈ [E; U ] ∩ [E; U ′] : wφ(U) = wφ(U ′)

}
are open for all pairs U, U ′ ∈ F0.

Condition (i) can be paraphrased by saying that w is componentwise surjective. The C-structure 
E in a continuation frame is called a stable extension of G.

Condition (iii) is crucial for continuity of the sections �[w; U ]. In the application of C-
structures in dynamics, G is typically unstable as the examples in the next section show. The 
next step is to topologize �[G] with the topology generated by

B(G) :=
{
�[w;U ](�) | U ∈ F0, � ⊂ [E;U ] open

}
,

where �[w; U ](�) is the image under �[w; U ] of objects φ ∈ �.

Lemma 4.3. B(G) is a basis for a topology on �[G]. The maps �[w;U] : [E; U ] ��[G] are 
all continuous.

Proof. Let �[w; U ](�1), �[w; U ′](�2) be some elements of B(G). We can write their inter-
section in the following way:

�[w;U ](�1) ∩ �[w;U ′](�2) = �[w;U ](�),

where we let � = �1 ∩ �2 ∩ {
φ ∈ [E; U ] ∩ [E; U ′] : wφ(U) = wφ(U ′)

}
. For any given 

�[w; U ] and basis element �[w; U ′](�), one has
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�[w;U ]−1(�[w;U ′](�)
)= � ∩ {

φ ∈ [E;U ] ∩ [E;U ′] : wφ(U) = wφ(U ′)
}
,

which is open. �
The functor π : �[G] �D may be regarded as a projection π : ob

(
�[G])� ob(D), and with 

the above defined topology on ob
(
�[G]), it is also a continuous map between topological spaces. 

In this setting we denote the objects of the category of elements by �[G], and we show that 
(�[G], π) is an étalé space in the category Set by establishing that π is a local homeomorphism, 
cf. Defn. 7.4.

Theorem 4.4. Let (G, E, w) be a C-continuation frame on D. Then, the pair (�[G], π) is an 
étalé space on D.

Proof. To establish (�[G], π) as an étalé space with the above defined topology on �[G] we 
show that π is a local homeomorphism.

Let (φ, S) be a point in �[G]. Then, since wφ : E(φ) � G(φ) is surjective for all φ, there exists 
U ∈ E(φ) such that wφ(U) = S. Consequently, the point (φ, S) is contained in the image of the 
map �[w; U ] : [E; U ] � �[G], which is open by the definition of the topology. The image 
under π of the set Im

(
�[w; U ]) is the set [E; U ] which is open by assumption. It remains to 

show that π : Im
(
�[w; U ])�[E; U ] is a homeomorphism.

First we show bijectivity. By definition π : Im
(
�[w; U ])� [E; U ] is onto and since φ ��

(φ, wφ(U)) for φ ∈ [E; U ] is a section by Lemma 4.3, we establish bijectivity.
Second we show that π : Im

(
�[w; U ])�[E; U ] is continuous and open. Let � ⊂ [E; U ]

be open. Then, π−1(�) = �[w; U ](�) is open by the definition of the topology which proves 
the continuity of π . Let �[w; U ′](�) be a basic open set. Then,

π
(
�[w;U ′](�) ∩ Im

(
�[w;U ]))= � ∩ {

φ ∈ [E;U ] ∩ [E;U ′] : wφ(U) = wφ(U ′)
}

is open, and thus π is a homeomorphism. This proves that �[G] is an étalé space in Set. �
In the spirit of [21] two points (φ, S) and (φ′, S′) are related by continuation if they are 

contained in the same quasicomponent of �[G], or equivalently (φ′, S′) is contained in the qua-
sicomponent of (φ, S). Recall that a quasicomponent of (φ, S) of �[G] is the intersection of all 
clopen subsets of �[G] containing (φ, S). The following result characterizes this topology.

Proposition 4.5. Let (G, E, w) be a C-continuation frame. The topology generated by the basis 
B(G) is the coarsest topology such that the maps �[w; U ] : [E; U ] ��[G] are continuous, 
and π : �[G] �D is a local homeomorphism.

Proof. Theorem 4.4 and Lemma 4.3 give us that B(G) generates such a topology. Now suppose 
the maps �[w; U ] : [E; U ] ��[G] are continuous, and π : �[G] � D is a local homeomor-
phism in some topology τ . Let � ⊂ [E; U ] be an open set in D for some U . We have that 
π ◦ �[w; U ] = ι where ι denotes the inclusion of � into D. Since ι and π are both local homeo-
morphisms, so is �[w; U ], which implies that the image �[w; U ](�) is in τ . Every element of 
B(G) is of this form; thus, B(G) is coarser than τ . �
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The stable C-structure in a C-continuation frame yields a second étalé space. Topologize �[E]
as follows. Define the embedding �[id; U ] : [E; U ] ��[E] as the trivial section φ �� (φ, U)

and define a subbasis for the topology on �[E] as follows:

B(E) :=
{
�[id;U ](�) | U ∈ F0, � ⊂ [E;U ] open

}
.

Corollary 4.6. Let (G, E, w) be a C-continuation frame on D. Then, the pair (�[E], π) is an 
étalé space on D.

Proof. The projection π : �[E] � ob(D) given by (φ, U) �� φ is a local homeomorphism with 
the above defined topology, i.e. π : �[E; U ] �[E; U ] is a homeomorphism. �

The category of elements �[F] trivially gives an étalé space and makes the span of functors 
in (5) into a span of étalé spaces. A continuous map �[w] : �[E] ��[G] is called an étalé mor-
phism if the following diagram in commutes, cf. [31, Definition 3.3].

�[E] �[G]

D

�[w]

π π
(8)

Such a map is then a local homeomorphism by [32, Proposition 2.4.8], [31, Lemma 3.5].

Corollary 4.7. The map �[w] : �[E] ��[G] is an étalé morphism.

Proof. By definition of the topologies on �[E] and �[G], the inverse image under �[w] of a 
basis element �[w; U ](�), � ⊂ D open, is open in �[E], which proves that �[w] is continu-
ous. �
4.3. Induced étalé morphisms

The following lemma provides a criterion to construct an étalé space morphism from a natural 
transformation of structures.

Lemma 4.8. Let E, E′ be stable C-structures on D and let n : E ⇒ E′ be a natural transformation. 
Then, the induced functor �[n] : �[E] ��[E′], defined by

(φ,U) �� (φ,nφ(U)),

defines a morphism of étalé spaces if and only if the sets

{φ ∈ [E;U ] : nφ(U) = U ′},

are open for every pair U, U ′ ∈ F0.
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Proof. Suppose �[n] is continuous, and U, U ′ ∈ F0. Then,

{
φ ∈ [E;U ] | nφ(U) = U ′}= π

(
�[n]−1(Im(�[id;U ]))∩ Im(�[id;U ′])

)
,

which is open. Now for the converse. Let �[id; U ′](�) be a subbasis element of �[E′]. Then,

⋃
U∈F

(
� ∩ {

φ ∈ [E;U ] | nφ(U) = U ′})= �[n]−1(�[id;U ′](�)
)
,

which is a union of open sets, and therefore open. �
When the action of nφ is independent of φ ∈ ob(D), the openness condition is trivially 

satisfied. This condition for stable structures translates to unstable structures in the following 
proposition.

Proposition 4.9. Let (G, E, w) and (G′, E′, w′) be continuation frames on D, and let v : G ⇒ G′
be a natural transformation. Suppose there exists a natural transformation ̃v : E ⇒ E′ such that 
�[̃v] is continuous, and the following diagram commutes:

E E′

G G′

ṽ

w w′

v

(9)

Then, �[v] is a morphism of étalé spaces. The lift ̃v is called a stable extension of v.

Proof. We have the following maps on étalé spaces:

�[E] �[E′]

�[G] �[G′]

D

�[̃v]

�[w] �[w′]
�[v]

π

π

By Corollary 4.7 �[w] and �[w′] are étalé morphisms and by [32, Proposition 2.4.8], [31, 
Lemma 3.5] the map �[ṽ] is an étalé morphism. Diagram chasing then shows that �[v] is also 
an étalé morphism by using the same results. �
5. Continuation of attractors and Morse representations

In this section we establish continuation frames for attractors and for finite sublattices of 
attractors. The latter induces continuation of Morse representations.
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5.1. Attractors

In Section 3 we established the functors ANbhd and Att acting between the category of dy-
namical systems and the category of bounded, distributive lattices. The topologies introduced in 
Section 2 yield the following result.

Lemma 5.1. ANbhd : DS(T , X) � BDLat is a stable structure.

Proof. As subset of DS(T , X) we define [ANbhd; U ] := {φ ∈ DS(T , X) | U ∈ ANbhd(φ)} for 
any subset U ⊂ X. The condition U ∈ ANbhd(φ) is equivalent to ωφ(U) ⊂ intU . By [2,3] we 
have the equivalent characterization: U ∈ ANbhd(φ) if and only if there exists a time τ > 0 such 
that

φt (clU) ⊂ intU ∀t � τ, (10)

which is equivalent to ⋃
t∈[τ,2τ ]

φt (clU) = φ
([τ,2τ ] × clU

)⊂ intU. (11)

Indeed, if (10) is satisfied then (11) follows. On the other hand if (11) is satisfied then

φ
([2τ,3τ ] × clU

)=
⋃

t∈[τ,2τ ]
φt+τ (clU) = φτ

( ⋃
t∈[τ,2τ ]

φt (clU)
)

= φτ (intU) ⊂ φτ (clU) ⊂ intU.

By induction φ
([nτ, (n + 1)τ ] × clU

)⊂ intU for all n � 1, which establishes (10). Summariz-
ing,

φ ∈ [ANbhd;U ] if and only φ
([τ,2τ ] × clU

)⊂ intU for some τ > 0. (12)

For any τ > 0 define Kτ = [τ, 2τ ] × clU ⊂ T ×X which is a compact set. Consider the basic 
open sets

B
(
Kτ , intU

) :=
{
φ | φ(Kτ ) = φ

([τ,2τ ] × clU
)⊂ intU

}
,

which are contained in the subbasis for the compact-open topology on DS(T , X). By (12) an el-
ement φ ∈ [ANbhd; U ] is contained in B

(
Kτ , intU

)
for some τ > 0 and thus [ANbhd; U ] ⊂⋃

τ>0 B
(
Kτ , intU

)
. On the other hand if φ ∈ B

(
Kτ , intU

)
for some τ > 0, then (12) im-

plies that φ ∈ [ANbhd; U ] which shows that 
⋃

τ>0 B
(
Kτ , intU

) ⊂ [ANbhd; U ] and thus 
[ANbhd; U ] =⋃

τ>0 B
(
Kτ , intU

)
which is a union of basic open set and thus open. �

The next result we prove for isolating neighborhoods, cf. Remark 3.8, which applies to the 
special case of attracting neighborhoods.

Lemma 5.2. The sets 
{
φ ∈ [INbhd; U ] ∩ [INbhd; U ′] : Invφ(U) = Invφ(U ′)

}
are open in 

DS(T , X).
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Proof. The proof is identical to Montgomery’s proof in [21] for flows. Let U1, U2 ∈ INbhd(φ)

for φ ∈ DS(T , X). If Invφ(U1) = Invφ(U2) = S, then Invφ(U) = S for U := U1 ∩ U2. For any 
point x ∈ Vi := clUi � intU, i = 1, 2, there exists a time τ > 0 such that φ(τ, x) ∈ X � Vi . By 
compactness, we may in fact pick τ > 0 such that φ(τ, Vi) ⊂ X � Vi . The set

� = [INbhd;U1] ∩ [INbhd;U2] ∩ {φ ∈ DS(T ,X) : φ(τ,V1) ⊂ X � V1}
∩ {φ ∈ DS(T ,X) : φ(τ,V2) ⊂ X � V2},

is open in the compact-open topology. For any ψ ∈ �, Invψ(U1) = Invψ(U) = Invψ(U2), so we 
are done. �

In particular, Invφ(U) = ωφ(U) when U ∈ ANbhd(φ) by Corollary 3.6 of [2]. Consequently, 
the triple 

(
Att, ANbhd, ω

)
is a BDLat-continuation frame on DS(T , X), and ANbhd is a stable 

extension for Att. By Theorem 4.4 we have that (�[Att], π) is an étalé space in Set.

Remark 5.3. Similar to attractors, the triple (INbhd, Isol, Inv) is a MLat-continuation frame on 
DS(T , X), where MLat is the category of bounded, meet-semilattices, cf. [21].

Remark 5.4. Stable extensions in a continuation frame are not unique. Following Remark 3.3, 
attracting blocks define attractors via ωφ : ABlock(φ) � Att(φ). As before we may regard 
ABlock : DS(T , X) � BDLat as a contravariant functor which is a stable extension of 
Att : DS(T , X) � BDLat. Using the inclusion transformation ι : ABlock ⇒ ANbhd, we obtain 
the following commutative diagram of transformations:

ABlock ANbhd

Att Att

ι

ω ω

id

Proposition 4.9 obtains an isomorphism between the étalé spaces generated from the two contin-
uation frames (Att, ANbhd, ω) and (Att, ABlock, ω).

The functor Att is the structure we wish to continue, with stable extension ω : ANbhd ⇒ Att. 
This gives

DS(T ,X) BDLat

ANbhd

Att

ω

�[Att]

[ANbhd;U ] DS(T ,X)

π
�[ω;U ]

⊂

We have the partial section map

�[ω;U ] : [ANbhd;U ]��[Att],
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which maps a dynamical system φ with attracting neighborhood U to the pair (φ, A) with its 
associated attractor A = ωφ(U). Since ωφ is surjective, given a pair (φ, A) ∈ �[Att], there exists 
an attracting neighborhood U such that �[ω; U ](φ) = (φ, A).

Remark 5.5. Following Remark 3.6, we can build a continuation frame (Rep, RNbhd, α) for 
repellers, which gives us an étalé space �[Rep]. Proposition 4.9 and the setup in C allow us to 
construct an isomorphism of étalé spaces from the dual repeller operator

�[∗] : �[Att]��[Rep] (φ,A) �� (φ,A∗),

by using the set complement on attracting neighborhoods as a stable extension of ∗. To view 
set complement and ∗ as natural transformations, one can augment the hom-set of BDLat with 
anti-homomorphisms or compose with an opposite functor. This technicality appears again in 5.2
with μ and τ . Alas, note that so far these are Set-valued étalé spaces. When we introduce lattice 
operations in Section 6, this will become an anti-isomorphism of BDLat-valued étalé spaces.

Remark 5.6. Note that the dual repeller operator ∗ is dependent on the underlying system φ:

A ��A∗ = {x ∈ X : ωφ(x) ∩ A = ∅}. (13)

For convenience of notation, we will omit the subscript when the underlying system is under-
stood.

5.2. Morse representations

Define the set subFAtt(φ) consisting of all the finite sublattices A ⊂ Att(φ). Every finite sub-
lattice is understood to contain at least the elements ∅ and ωφ(X). The set of finite sublattices 
can be given the structure of a semibounded lattice

A ∧ A′ := A ∩ A′, A ∨ A′ := [A ∪ A′], A,A′ ⊂ Att(φ),

where [A ∪ A′] is the smallest sublattice containing A ∪ A′. Note that, since the Att(φ) may be 
infinite, there may be no maximal element in subFAtt(φ), and hence subFAtt(φ) may not be 
a bounded lattice. The lattice subFAtt(φ) has minimal element {∅, ωφ(X)}. Also subFAtt(φ) is 
not a distributive lattice in general. The assignment Att(φ) � subFAtt(φ) may be regarded as 
covariant functor subF : BDLat� Lat, where Lat is the category of lattices. Indeed, if L and K
are bounded, distributive lattices and g : L � K is a lattice homomorphism (preserves 0 and 1), 
then the inclusion of a finite sublattice i : L′ ⊂ L defines a finite sublattice K′ ⊂ K as the range of 
the composition g ◦ i. We define the arrow

subF(g) : subFL� subFK, L′ �� subF(g)(L′) := K′.

The composition of functors yields the contravariant functors subF ◦ ANbhd and subF ◦ Att which 
provide the following diagrams:
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DS(T ,X) Lat

subFANbhd

subFSet

ι DS(T ,X) Lat

subFANbhd

subFAtt

ω (14)

where ι is the natural transformation defined by inclusion. The bounded lattice subFSet(X)

consists of finite rings of sets over X in the universe for the continuation frame we construct. 
Moreover, ω is a natural transformation defined as follows.

Let U ∈ subFANbhd(φ), then ωφ(U) := {A = ωφ(U) | U ∈ U}. This construction also yields 
the lattice homomorphism ωφ : U � ωφ(U). From the definition of subFANbhd we obtain the 
following lemma.

Lemma 5.7. subFANbhd : DS(T , X) � Lat is a stable structure. The sets {φ ∈ DS(T , X) :
ωφ(U) = ωφ(U′)} are open.

Proof. For any finite sublattice U ∈ subFSet(X) we observe that

[subFANbhd;U] =
⋂
U∈U

[ANbhd;U ],

which, by Lemma 5.1, is open. Suppose we have two finite sublattices U, U′ ∈ subFANbhd(ψ)

such that ωψ(U) = ωψ(U′). Then for each U ∈ U, there exists a U ′ ∈ U′ such that ωψ(U) =
ωψ(U ′), and vice versa. Take a finite intersection of open sets⋂

U∈U,U ′∈U′
ωψ(U)=ωψ(U ′)

{φ ∈ [ANbhd;U ] ∩ [ANbhd;U ′] : ωφ(U) = ωφ(U ′)}

⊂ {φ ∈ [subFANbhd;U] ∩ [subFANbhd;U′] : ωφ(U) = ωφ(U′)},

and we are done. �
By construction the natural transformation ω : subFANbhd =⇒ subFAtt is surjective, which in 

combination with Lemma 5.7 implies the following:

Lemma 5.8. The triple 
(
subFAtt, subFANbhd, ω

)
is a Lat-continuation frame.

Following [6,7] we associate an ordered partition T(U) for every finite sublattice U ∈
subFANbhd(φ): let J(U) be the poset of join-irreducible elements in U, elements U with a unique 
predecessor 

�−
U , and for U ∈ J(U) define T (U) = U �

�−
U . The poset J(U), ordered by inclusion, 

induces an isomorphic poset structure on T(U) := {T (U) | U ∈ J(U)} with T (U) � T (U ′) if and 
only if U ⊆ U ′. The poset T(U) is called a Morse tessellation for φ. We can similarly consider 
a finite sublattice A ∈ subFAtt(φ), and let J(A) be the poset of join-irreducible elements in A. 
Define a map J(A) � Invset(φ) by A ��M(A) := A ∩ (

�−
A)∗ = CAtt(A, 

�−
A). The elements M(A)
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compose the isomorphic poset M(A) := {M(A) | A ∈ J(A)} with M(A) � M(A′) if and only if 
A ⊆ A′. The poset M(A) is called a Morse representation for φ.

Let MRepr(φ) denote the set of Morse representations for a dynamical system φ, MTess(φ)

the set of Morse tessellations, and O : Poset� Lat the downset functor, so that O(T) is the lattice 
of downsets of T. Then, there are bijections:

τφ : subFANbhd(φ)�MTess(φ), τφ(U) := T(U), τ−1
φ (T) := {

U =
⋃

I | I ∈ O(T)
}
.

μφ : subFAtt(φ)�MRepr(φ), μφ(A) := M(A), μ−1
φ (M) := {

A =
⋃
M∈I

Wu(M) | I ∈ O(T)
}
.

These bijections let MRepr(φ) and MTess(φ) inherit the lattice structure of their dual counterparts 
subFAtt(φ) and subFANbhd(φ) respectively:

T ∨ T′ := τφ

(
τ−1

φ (T) ∧ τ−1
φ (T′)

)
, T ∧ T′ := τφ

(
τ−1

φ (T) ∨ τ−1
φ (T′)

)
M ∨ M′ := μφ

(
μ−1

φ (M) ∧ μ−1
φ (M′)

)
, M ∧ M′ := μφ

(
μ−1

φ (M) ∨ μ−1
φ (M′)

)
.

As such, τ and μ become lattice isomorphisms. We can view MRepr and MTess as functors 
assigning dynamical systems their Morse representations and Morse tessellations respectively. 
Define an action on morphisms using τ and μ:

h ∈ hom(φ,ψ), MTess(h) := τ−1 ◦ subFANbhd(h) ◦ τ , MRepr(h) := μ−1 ◦ subFAtt(h) ◦ μ.

τ and μ become natural transformations in this way. The result is the following diagram of 
functors:

DS(T ,X) Lat

subFANbhd

MTess

τ τ−1 DS(T ,X) Lat

subFAtt

MRepr

μ μ−1 (15)

Let ΔΔΔ be the natural transformation defined by

ΔΔΔ := μ ◦ ω ◦ τ−1.

Given a Morse tessellation T we obtain a Morse representation via T ��ΔΔΔφ(T) =: M. By the 
above correspondences M = μφ(A) with A = μ−1

φ (ΔΔΔφ(T)) and T = τφ(U) with U = τ−1
φ (T) and 

ωφ(τ−1
φ (T)) = A. For the elements U and ωφ(U) we have the homomorphism ωφ : U � A =

ωφ(U). This implies the following relation for Morse tessellations and Morse representations. 
Associated with U we have T = τφ(U) maps to M =ΔΔΔφ(T) and we obtain a canonical embedding 
ι : M ↪� T, which will be called a tessellated Morse decomposition. The embedding ι is induced 
by the homomorphism ωφ . The continuation frame is given by the following diagrams:
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DS(T ,X) Lat

MTess

OrdTess

ι DS(T ,X) Lat

MTess

MRepr

ΔΔΔ (16)

and establishes the continuation frame 
(
MRepr, MTess, ΔΔΔ

)
. Here the universe is given by 

OrdTess(X) which is the (complete) bounded lattice of finite ordered tessellations of X.

Remark 5.9. The lattice operations on MRepr(φ) and MTess(φ) are motivated by the duality 
between (Priestley) pre-orders and sublattices, i.e. for a bounded distributive lattice L there exist 
an anti-isomorphism to the lattice of Priestley pre-order on the Priestley ΣL and the lattice sub L
of sublattices of L, cf. [33, Thm. 3.7], [34, Thm. 2.5].

6. Algebraic constructions

In this section we incorporate the binary operations of lattices, groups, rings, etc. and augment 
the étalé spaces with these operations.

6.1. Binary operations and lattices

Given two étalé spaces (�, π), (�′, π ′) over a topological space. Define

� • �′ := {
(σ,σ ′) ∈ � × �′ : π(σ) = π ′(σ ′)

}
,

which is also an étalé space with the same projection map and the product topology, cf. [31, Sect. 
2.5].

Proposition 6.1. Suppose the category C has concrete binary products.3 Let (G, E, w), (G′, E′, w′)
be C-continuation frames on D. Then, (G × G′, E × E′, w × w′) is a continuation frame and the 
map

g : �[G × G′]��[G] • �[G′], (
φ, (S,S′)

)
��

(
(φ,S), (φ,S′)

)
is a homeomorphism.

Proof. Since both w and w′ are surjective componentwise, so is w × w′. For the openness condi-
tions:

[G × G′; (U,U ′)] = {
φ ∈ ob(D) | (U,U ′) ∈ (G × G′)(φ)

}= [G;U ] ∩ [G′;U ′].
{φ ∈ D : (w × w′)φ(U1,U2) = (w × w′)φ(U ′

1,U
′
2)} ={φ ∈ D : wφ(U1) = wφ(U ′

1)}
∩ {φ ∈ D : w′

φ(U2) = w′
φ(U ′

2)}

3 The product in C is the product of sets after applying the forgetful functor.
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which is open. Bijectivity of g is immediate; it remains to be shown that g is continuous and open 
on subbasis elements. Let U, U ′ ∈ F and �, �′ open in [E; U ] and [E′; U ′] respectively.

Then,

g−1
(
�[w;U ](�) × �[w;U ′](�′) ∩ �[G] • �[G′]

)
= �

[
w × w; (U,U ′)

]
(� ∩ �′),

which is open. Similarly, letting U, U ′ ∈ F and � ⊂ [E × E′; (U, U ′)] open we have:

g
(
�[w × w′; (U,U ′)]

)
= �[w;U ](�) × �[w′,U ′](�) ∩ �[G] • �[G′]

which proves that g is an open map and therefore a homeomorphism. �
Remark 6.2. The universe functor in the product continuation frame is the product F × F′.

We can apply Propositions 4.9 and 6.1 to the BDLat-continuation frames (Att, ANbhd, ω) and 
(Rep, RNbhd, α) to interpret lattice operations as morphisms of étalé spaces. This permits us to 
regard �[Att] and �[Rep] as BDLat-valued.

For example ∧φ : Att(φ) × Att(φ) � Att(φ) given by (A, A′) ��A ∧ A′ forms a natural trans-
formation

∧: Att × Att ⇒ Att.

From Proposition 4.9 ∧̃ : ANbhd × ANbhd ⇒ ANbhd, given by (U, U ′) ��U ∩U ′ with ωφ(U) =
A and ωφ(U ′) = A′, acts as a lift for ∧ which yields an étalé space morphism from �[Att × Att]
to �[Att]. Combining the latter with Proposition 6.1 yields an étalé space morphism:

�[∧] : �[Att] • �[Att]��[Att], (
(φ,A), (φ,A′)

)
�� (φ,A ∧ A′),

which establishes ∧ as a continuous binary operation on �[Att]. The same can be achieved for 
∨. Absorption, distributivity, and associativity follows immediately from the properties of ∧ and 
∨. It remains to show that the assignments of the neutral elements

φ �� (φ,∅) ∈ �[Att], φ ��
(
φ,ωφ(X)

) ∈ �[Att],
are continuous. By composing the constant sections �[id; ∅], �[id; X] : DS(T , X) ��[ANbhd]
with the continuous map �[ω] we obtain the desired result. A similar argument holds for Rep. 
Consequently, we have established �[Att] and �[Rep] as BDLat-valued étalé spaces. We later 
explore abelian structures and ring structures which are used in the treatment of sheaf cohomol-
ogy.

6.2. The Conley form

Recall that the Conley form assigns to two attractors A, A′ ∈ Att(φ) an associated invariant 
set (A, A′) �� CAtt(A, A′) := A ∩ A′ ∗, where A′ ∗ ∈ Rep(φ) is dual to A′ in the sense that A′ ∗ =
αφ(Uc) where U ∈ ANbhd(φ) with ωφ(U) = A′. The repeller A′ ∗ is called the dual repeller
to A′. The Conley form has a universal property in the sense that it is a unique extension of 
set-difference for bounded, distributive lattices, cf. [6].
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A Morse neighborhood is a subset T ⊂ X given by T = U ∩ V with U ∈ ANbhd(φ) and 
V ∈ RNbhd(φ). It holds that Invφ(T ) = ωφ(U) ∩ αφ(V ) := M which is called a Morse set. By 
construction M ⊂ intT , cf. [6]. The Morse sets are denoted by Morse(φ) which is a bounded, 
meet-semilattice with binary operation M ∧ M ′ := Invφ(M ∩ M ′). The Morse neighborhoods 
are denoted by MNbhd(φ) and form a bounded, meet-semilattice with intersection as binary 
operation. Both ∅ and ωφ(X) are neutral elements. As before, Inv : MNbhd ⇒ Morse is a sta-
ble MLat-structure, where MLat is the category of bounded, meet-semilattices. The triple 
(Morse, MNbhd, Inv) is a MLat-continuation frame and by the general theory in Section 4 we 
obtain the MLat-étalé space �[Morse] of Morse sets.

By the same token we can treat the Conley form as natural transformation

CAtt : Att × Att =⇒ Morse,

where the functor Morse assigns the bounded, meet-semilattice of Morse sets to φ. By Proposi-
tion 6.1 this leads to a continuous operation

�[CAtt] : �[Att] • �[Att]��[Morse] (
(φ,A)(φ,A′)

)
��

(
φ,CAtt(A,A′)

)
.

The map �[CAtt] will play a role in setting up the appropriate algebraic construction for sheaf 
cohomology.

A variation on the Conley form is the symmetric Conley form which is defined as follows:

(A,A′) �� C∗(A,A′) := CAtt(A ∪ A′,A ∧ A′) = (A ∩ A′ ∗) ∪ (A′ ∩ A∗).

For the symmetric Conley form we use the following notation: (A, A′) ��A + A′.

Remark 6.3. The range of the symmetric Conley form is the same as for the standard Conley 
form. Indeed, if A′ ⊂ A then C∗(A, A′) = CAtt(A, A′). For any pair of attractor A, A′ absorption 
implies that CAtt(A, A′) = CAtt(A, A ∧ A′) which shows that the Conley form can always be 
determined from nested pairs, in which case the standard and symmetric Conley forms coincide.

6.3. The algebra of attractors

In this section we take a closer look at the algebraic structure of attractors. Algebraic struc-
tures and in particular (abelian) group structures are important for the (co)homological theory 
of sheaves. Our starting point is the lattice of attractors Att(φ) of a fixed dynamical system φ, 
which is a bounded, distributive lattice. Before treating the lattice of attractors we first consider 
bounded, distributive lattices from a more general point of view.

Let (L, ∧, ∨, 0, 1) be bounded, distributive lattice. An ideal in L is a down-set I such that 
a, b ∈ I implies a ∨ b ∈ I . If a ∧ b ∈ I implies a ∈ I or b ∈ I , then I is called a prime ideal. 
Prime ideals of L are given as I = f −1(0) where f ∈ hom(L, 2) and 2 is two-elements lattice 
{0, 1}, cf. [35,36]. The poset 

(
ΣL, ⊂)

of the prime ideals in L, ordered by inclusion, is called 
the spectrum of L. A result due to Birkhoff states that the map j : L � O(ΣL), given by a ��
j (a) = {I ∈ ΣL | a /∈ I }, is a lattice embedding, where O(ΣL) is the lattice of down-sets in ΣL
with binary operations ∩ and ∪, cf. [2,5,6]. In order to characterize the image of j Priestley 
introduced a topology on ΣL in the spirit of Stone spaces. Consider the basis
146



K.A. Dowling, W.D. Kalies and R.C.A.M. Vandervorst Journal of Differential Equations 367 (2023) 124–198
Fig. 3. The saddle-node bifurcation in Fig. 7 has stalk Att(φ) represented as Hasse diagram of the lattice [left], cf. 
[6]. The associated spectrum of prime ideals I1 = {∅, −∞}, I2 = {∅, p}, I3 = {∅, −∞, p, {−∞, p}, [−∞, p]} and I4 ={∅, p, [p, ∞]} [middle]. The (finite) Boolean algebra BAtt(φ) [right] is the minimal Boolean extension, or Booleanization 
of Att(φ). In red the isomorphic image of Att(φ) in BAtt(φ) is indicated. (For interpretation of the colors in the figure(s), 
the reader is referred to the web version of this article.)

{j (a)� j (b) | a, b ∈ L},
where j (a) � j (b) := j (a) ∩ j (b)c is set-difference. All the basic open sets are also closed and 
thus clopen. The Priestley Representation Theorem states that

Oclp(ΣL) = {j (a) | a ∈ L},
i.e. L is isomorphic to Oclp(ΣL), the lattice of clopen down-sets, via the map j , cf. [35,36]. The 
Boolean algebra BL := Setclp(˚L) of clopen subsets in ΣL is called the Booleanization, or minimal 
Boolean extension of L, and j : L � BL is a lattice-embedding given by j (a) = {I ∈ ΣL | a /∈ I }, 
[35, Thm. 10.19], cf. [37–39]. For more details on Booleanization cf. [5,6].

Boolean algebras can be given the structure of a ring. Given a Boolean algebra (B, ∧, ∨,c , 0, 1)

define

a + b := (a ∧ bc) ∨ (b ∧ ac) (symmetric difference) and a · b := a ∧ b.

Then, (B, +, −, 0, 1) is a commutative, idempotent ring (idempotency with respect to multipli-
cation). One retrieves the Boolean algebra structure via a ∨ b = a + b + a · b. We can formulate 
this as a faithful functor I : Bool� Ring from the category of Boolean algebras to the category 
of rings:

BDLat Bool RingB I

Define the ring obtained from Booleanization of L as the (Boolean) lattice ring of L:

RL := (I ◦ B)(L) (17)

the composition is also denoted by R := I ◦ B. This is the natural way to give an abelian structure 
to a bounded distributive lattice L. We note that RL is in general not free as additive Z2-module 
(vector space), nor as multiplicative monoid. Since L may be regarded as a (commutative) monoid 
with respect to ∧ we can use the monoid ring construction, cf. [40–42], to define the Z2-algebra 
Z2L, which is a free Z2-module (vector space). The elements of Z2L are finite formal sums 
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∑
i ai , ai ∈ L, with the additional requirement that 2a = a + a = 0. Multiplication is given by 

a ·b := a ∧b. We refer to Z2L as the lattice algebra of L which was first introduced in the context 
of minimal Boolean extension by MacNeille [43]. The lattice algebra Z2L is clearly a Boolean 
ring as is the lattice ring. The Z2-monoid ring construction defines a covariant functor

BDLat Ring.
Z2

Example 6.4. Consider the lattice Att(φ) shown in Fig. 3. The Boolean algebra of prime ideals 
BAtt(φ) has four atoms, {I1}, {I2}, {I3}, and {I4}. The corresponding Boolean ring RAtt(φ) has 
sixteen elements, and is generated by these four atoms as a Z2-vector space RAtt(φ) ∼= Z4

2. On 
the other hand, Z2Att(φ) is generated by the basis {∅, {−∞}, {p}, {−∞, p}, [p, ∞], [−∞, p],
{−∞} ∪ [p, ∞], X}, so Z2Att(φ) ∼= Z8

2.

The analog of the homomorphism j : L � BL is now given by the ring homomorphism:

j : Z2L� RL, j
(∑

i

ai

)
:=

∑
i

j (ai) =
∑

i

αi .

By definition j (a ∧ b) = j (a) ∩ j (b), which makes j an algebra homomorphism. The image of 
the generators of Z2L in RL is downsets in ΣL and via the induced ∨ operation the lattice L can 
be retrieved. By construction

j (a) + j (b) = (
j (a) ∪ j (b)

)
�
(
j (a) ∩ j (b)

)= j (a ∨ b)� j (a ∧ b)

= Cσ (a ∨ b, a ∧ b).

When b ⊂ a, then j (a) + j (b) = Cσ (a, b) and thus the sums j (a) + j (b) exhaust the range of 
the Conley form Cσ : L × L � RL. We define the set CL := {

Cσ (a, b) | a, b ∈ L
}

as the convexity 
monoid: for σ, σ ′ ∈ CL we have σ · σ ′ = Cσ (a, b) ∩ Cσ (a′, b′) = Cσ (a ∧ a′, b ∨ b′) ∈ CL and 
σ · 1 = Cσ (a, b) ∩ Cσ (1, 0) = Cσ (a ∧ 1, b ∨ 0) = Cσ (a, b) = σ . Clearly the embedding i : CL �
RL is a monoid homomorphism.

Lemma 6.5. The ring homomorphism j : Z2L � RL is surjective.

Proof. Let γ ∈ RL, then by a property of the Priestley topology we can express γ as finite union 
of the form: γ =⋃

i αi �α′
i , with αi = j (ai), α′

i = j (a′
i ) and ai, a′

i ∈ L. The objective is to prove 
that γ is in the range of j . Consider α�β ∪γ �δ. We may assume without loss of generality that 
β ⊂ α and δ ⊂ γ . Indeed, use α�β = α� (α∩β). Therefore, α�β ∪γ �δ = (α+β) ∪ (γ +δ), 
and

(α + β) ∪ (γ + δ) = α + β + γ + δ + (α + β) ∩ (γ + δ)

= α + β + γ + δ + (α ∩ γ ) + (α ∩ δ) + (β ∩ γ ) + (β ∩ δ),

which corresponds to a sum of j -images of elements in L. We conclude that γ = ⋃
i αi � α′

i =∑
α̃k =∑

j (ãk), ãk ∈ L, which proves that γ is in the range of j . �
k k
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We now have the following short exact sequence:

0 ker j Z2L RL 0,
⊂ j

(18)

and since the kernel ker j is an ideal in Z2L the first isomorphism theorem for rings yields

RL ∼= Z2L

ker j
,

where the isomorphism is given 
∑

i ai + ker j ��
∑

i αi . If we regard j as a module (vector 
space) homomorphism then both ker j and Z2Att(φ) are free Z2-modules. The ideal ker j can be 
characterized as follows.

Lemma 6.6. ker j is the ideal freely generated by elements of the form a ∨ b + a + b + a · b.

Proof. For an element a ∨ b + a + b + a · b we have that

j (a ∨ b + a + b + a · b) = j (a ∨ b) + j (a) + j (b) + j (a · b)

= j (a) ∪ j (b) + j (a) + j (b) + j (a) ∩ j (b)

= 2
(
j (a) ∪ j (b)

)= ∅,

which proves that finite sums of elements of the form a ∨ b + a + b + a · b are contained in 

ker j . Let j
(∑

i ai

)
= ∑

i αi = ∅, then the sum must have an even number of terms. We can 

rearrange the sequence to a filtration α′
1 ⊂ · · · ⊂ α′

2m such that 
∑

i αi =∑
i α

′
i = ∅. Consequently 

α′
2k−1 + α′

2k = ∅ for k = 1, · · · , m, i.e. α′
2k−1 = α′

2k for all k. In order to have distinct elements 
mapping to α′

2j−1 = α′
2j we have

j (bk + ck) = α′
2k−1 = α′

2k = j (bk ∨ ck + bk · ck),

which proves that element in kerj is contained in the set of formal sums generated by terms of 
the form a ∨ b + a + b + a · b. �

Let us return to the lattice of attractors Att(φ). Define the attractor ring of a dynamical system 
φ as RAtt(φ) := (I ◦ B)

(
Att(φ)

)
as the Boolean lattice ring of Att(φ). This is the natural way to 

give an abelian structure to the attractors of a dynamical system. Via the monoid ring construction 
we obtain the algebra Z2Att(φ) which is called the free attractor ring over Z2.

7. Sheaf constructions

While sheaves and étalé spaces are equivalent from a categorical viewpoint, the theory of 
sheaves contributes a rich algebraic toolkit to our study of continuation. Perhaps most prominent 
is the idea of sheaf cohomology.
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7.1. Basic sheaf theory

In this subsection we provide a brief recap of sheaf theory. Let O(D) be the poset of open 
subsets in a topological space D treated as small category where the morphisms are inclusions of 
sets.

Definition 7.1. A presheaf of sets on a topological space D is a contravariant functor 
F : O(D) � Set. Explicitly, a presheaf, F , is characterized by the following ingredients:

(i) for every open subset � ⊂ D there is an set F (�). An element of F (�) is called a section
of F (�) over �;

(ii) for every pair of open sets �′ ⊆ � in D, there are restriction morphisms ρ�′,� : F (�) �
F (�′), which satisfy
(a) for all open sets � in D, it holds that ρ�,� = idF (�);
(b) for all triples of open set �′′ ⊆ �′ ⊆ � in D it holds that ρ�′′,� = ρ�′′,�′ ◦ ρ�′,�.

Crucial in the theory of presheaves and sheaves is the notion of stalks.

Definition 7.2. For any φ ∈ D the stalk of F at φ is defined as

Fφ := lim
−−�
φ∈�

F (�).

The elements in Fφ are called germs of sections in F (�), i.e. F (�) �Fφ .

Sheaves can be defined via presheaves by adding additional axioms on the restriction mor-
phisms with respect to coverings of X.

Definition 7.3. A sheaf F of sets over D is a presheaf which satisfies the following hypotheses:

(s1) (Mono-presheaf) Let {�i}i∈I be an open covering of an open set � in X, and let σ, σ ′ ∈
F (�) be sections such that

σ |�i
= σ ′|�i

, ∀i ∈ I,

then σ = σ ′;
(s2) (Gluing) Let {�i}i∈I be an open covering of an open set � in X, and let {σi}i∈I , σi ∈

F (�i), be a family of sections such that

σi |�i∩�j
= σj |�i∩�j

, ∀i, j ∈ I,

then there exists a section σ ∈ F (�) with the property that σi = σ |�i
.

The section σ given by (s2) is called a gluing of sections σi , consistent with the overlaps.

There are two important functors between the categories of presheaves and sheaves, denoted 
by PrSh(D) and Sh(D) respectively, which reveal important constructions to turn presheaves into 
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sheaves and vice versa. The construction consists of a number of steps. The first step concerns 
the definition of étalé spaces, cf. [31, Defn. 3.3].

Definition 7.4. An étalé space over a topological space D is a pair (�, π), where � is a topo-
logical space and π : � � D a continuous map such that π is a local homeomorphism. The set 
of sections �(�, �) consists of continuous maps σ : � ��, which satisfy π ◦ σ = id�.

The morphisms of étalé spaces are maps f : (�, π) � (�′, π ′) such that π = π ′ ◦ f . As for 
presheaves and sheaves, the étalé spaces over D form a category, denoted by Et(D). Étalé spaces 
give rise to sheaves in a natural way. Let (�, π) be a étalé space, then the presheaf �� is defined 
as follows. Let � be an open set in D, then

O(D)� Set, � �� (��)(�) := �(�,�), (19)

gives a presheaf of sets over D.
Morphisms of étalé spaces (�, π) yield morphisms of presheaves ��. Let f : (�, π) �

(�′, π ′) be a étalé morphism, then

�f : ��� ��′,

defines a presheaf morphism via the relation σ �� f ◦ σ .

Proposition 7.5. Let (�, π) be a étalé space over D. Then �� is a sheaf of sets over D and is a 
called the sheaf of sections of (�, π).

This construction defines the functor Γ : Et(D) � Sh(D). The functor Γ also maps to 
presheaves. The construction of considering sheaves of sections can be extended to presheaves, 
which is the second step in establishing the above correspondence.

Let F : O(D) � Set be a presheaf of sets over D and let Fφ be the stalk over a point φ ∈ D. 
Define the space

LF :=�
φ∈D

Fφ,

and π : LF � D the projection such that π−1(φ) = Fφ . We now put a topology on LF such 
that (LF , π) is an étalé space. Let � be an open set in D and let σ ∈ F (�) be a section. Then, 
define the map σ̂ : � � LF via φ �� σφ ∈ Fφ . Declare σ̂ (�) = {σφ | φ ∈ �} as open sets and 
define {

σ̂ (�) | σ ∈ F (�)
}

as a basis for the topology on LF . With the above defined topology, that (LF , π) is a étalé space 
in the sense of Definition 7.4.

Remark 7.6. If we restrict to sheaves and étalé spaces then we have the functors

Γ : Et(D)� Sh(D), L : Sh(D)� Et(D).
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If (�, π) is a étalé space, then LΓ� and � are canonically isomorphic as étalé spaces. Similarly, 
if F is a sheaf, then F and ΓLF are isomorphic. This shows that étalé spaces and sheaves are 
essentially the same.

Starting from a presheaf F the consecutive application of Γ and L provides a sheaf F # :=
LΓF . This is called the sheafification of F which defines a covariant functor # : PrSh(D) �
Sh(D). From the previous remark we have that if F is a sheaf it is canonically isomorphic to its 
sheafification. For the application of sheaf theory in this text the category C that is involved often 
are small categories of algebraic structures such as semi-lattices, lattices, abelian group, rings, 
etc.

Remark 7.7. Sheaves can be defined with values in categories other than Set, such as bounded 
distributive lattices, rings, or abelian groups. In these cases, achieving the duality between 
étalé spaces and sheaves requires modification of the definition of étalé space to account for the 
algebra. For example, we showed in Proposition 6.1 that �[Att] is a BDLat-valued étalé space 
by demonstrating the wedge and meet operations, as well as the assignments of the neutral ele-
ments, were continuous. This ensures that the sheaf associated to the étalé space �[Att] is in fact 
a sheaf of bounded distributive lattices. For more details on these kinds of constructions, cf. [44, 
Sect 1.1], [31, Sect. 2.5].

Example 7.8. Let E ∈ Ab be an abelian group. The presheaf E : O(D) �Ab defined by E (�) :={
σ : � � E constant

}
, � ⊂ D open, is called the constant presheaf over D with values in E. The 

sheafification E := E # is called the constant sheaf over D with values in E. The constant sheaf 
can be characterized as the sheaf of locally constant functions with values in E, i.e.

E(�) = {
σ : �� E locally constant

}
, � ⊂ D, open.

If we equip E with the discrete topology then such functions are continuous functions σ : � � E. 
This corresponds to the sheaf of sections of the étalé space D × E, with E equipped with the 
discrete topology, cf. [31, Sect. 2.4], [45, Ex. 3.31 and 3.40]. If � ⊂ D is open and connected 
then E(�) ∼= E. For an open set whose connected components are open the E(�) is isomorphic 
to a direct product of copies of E, one for each connected component, cf. [46, Ex. 1.0.3].

An abelian sheaf F is called locally constant is there exists an open covering U = {�i} of D
such that F |�i

is a constant sheaf for all i. This is equivalent to saying that every point allows a 
neighborhood � ⊂ D such that F |� is constant, cf. [41, Defn. I.1.9]. Locally constant sheaves 
are sheaves of sections of covering spaces, [45, Ex. 3.41].

7.2. Sheafification of continuation

From an abstract continuation frame we have shown how to build an étalé space which en-
codes the continuation of the unstable structure of interest. This étalé space �[G] connects the 
topology of the base space to the algebraic structure of G. To study this connection, we shift our 
attention to the sheaves of sections generated by the étalé spaces of continuation frames.

The presheaf

S G : O(D)� Set,
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where O(D) is the category of open sets in D, is in fact a sheaf over D and is called the sheaf of 
sections, cf. [31, Sect. 2.2C]. A stalk of the sheaf S G at φ ∈ D is the object G(φ). By considering 
sections in �[E] we obtain the sheaf of sections S E and stalks in S E are denoted by E(φ), cf. 
[31, Prop. 3.6].

Remark 7.9. There are multiple equivalent ways to define stalks. The sheaf-theoretic definition 
is a direct limit S G

φ := lim−�S G(�) over open neighborhoods � of a point φ. Equivalently, for 
an étalé space π : �[G] � D the stalk at φ can be defined as π−1(φ). In our setting, we make 
the identification between π−1(φ) and G(φ).

Lemma 7.10. Let (G, E, w) be a continuation frame and let σ : � ��[G] be a map with prop-
erty that π ◦σ = id on � (open). Then, σ is a section in �[G] if and only if for every φ ∈ � there 
exists an open neighborhood �0 ⊂ � of φ and U ∈ E(φ), such that σ

∣∣
�0

= �[w;U ]∣∣
�0

.

Proof. This follows immediately from the definition of sheaves. �
Sections therefore act locally like �[w; U ]. Following this intuition, observe that �[w; U ]

is a section in �[G] over [E; U ]. The above lemma implies we only need to verify that a 
candidate section locally agrees with �[w; U ] for a particular U ∈ E(φ) for some φ ∈ ob(D), 
rather than all such U . By the same token sections σ : � ��[E] are given locally by �[id; U ], 
i.e. σ(φ) = (φ, U).

From the construction of the sheaves S E and S G we have the following property of the 
natural transformation w:

S E(�) S G(�)

S E(�′) S G(�′)

ρ�′,�

w(�)

ρ�′,�

w(�′)

where w(�) : S E(�) � S G(�) is defined by σ �� �[w] ◦ σ , � open, and similarly for 
�′ ⊂ �. The maps ρ�′,� are the restriction maps. The latter defines a morphism of sheaves
w : S E�S G. Since w yields the stalkwise surjections wφ : E(φ) � G(φ), we say that the mor-
phism w : S E�S G is surjective.

7.3. Attractor sheaves

In Section 6.1 we constructed étalé spaces in various categories such as bounded, dis-
tributive lattices. The above sheaf of sections construction creates sheaves with values in 
these same categories. For example, the C-structure (Att, ANbhd, ω) yields the étalé morphism 
�[ω] : �[ANbhd] � �[Att] and the BDLat-valued sheaves S ANbhd : O(DS(T , D)) � BDLat
and S Att : O(DS(T , D)) � BDLat. Hence, we obtain the following morphism of sheaves

ω : S ANbhd � S Att

that assigns to every section σ : � ��[ANbhd] the section �[ω](σ ) : � ��[Att]. The sheaf 
S Att is called the attractor lattice sheaf over DS(T , D).
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Similarly, we have the morphism of sheaves

α : S RNbhd � S Rep,

where S Rep is the repeller lattice sheaf. Duality between Att and Rep, as well as between ANbhd
and RNbhd, yields the following commutative diagram of sheaves:

S ANbhd S RNbhd

S Att S Rep

ω

c

α

∗

The Conley form on étalé spaces in Section 6.2 gives rise to the MLat-valued sheaf

S Morse : O(DS(T ,D))�MLat.

For S Att, a lattice-valued sheaf, we need a suitable ring structure to define their sheaf co-
homology. Viewing S Att as a functor from the posetal category of open sets on DS(T , X)

to the category of bounded distributive lattices, we may compose this with a functor from 
BDLat to Ring. In Section 6.3 we consider two such functors: the Boolean ring functor, 
R = I ◦ B : BDLat� Ring, and the monoid ring functor, Z2 : Monoid� Ring. This yields 
presheaves

RS Att : O(DS(T ,X))�Ring,

and

Z2S
Att : O(DS(T ,X))�Ring

These may fail to be sheaves in general. To remedy this, one studies the sheaf 
(
RS Att

)#
generated 

by the presheaf RS Att (also called the sheafification), cf. Section 7.1. So we define

A := (
RS Att)#

, Att := (
Z2S

Att)#
.

These are called the attractor sheaf and free attractor sheaf over DS(T , X) respectively. For 
any φ,

Aφ = lim−�
��φ

A(�) ∼= lim−�
��φ

RS Att(�) ∼= R

(
lim−�
��φ

S Att(�)

)
∼= RAtt(φ).

The first isomorphism is due to sheafification preserving stalks, and the second is due to R pre-
serving colimits (it is a left adjoint). Similarly, Attφ

∼= Z2Att(φ). Especially for computations in 
Section 8, it will be useful to describe sections of A with those of S Att. After all, on stalks we 
have the embedding j : Att(φ) � BAtt(φ) from the attractor lattice to its Booleanization. To that 
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end, we construct a morphism (viewed as between sheaves of sets). Note that as sets, RS Att(�)

and BS Att(�) are equal. So for every open set � ⊂ DS(T , X), there is a mapping

j : S Att(�)� RS Att(�),

described in 6.3. An application of [6, Proposition 1] ensures that these maps commute with the 
sheaf restriction maps. Thus, we may collect these maps into a morphism (viewed as between 
presheaves of sets)

j : S Att� RS Att.

Composing this with the natural “sheafification” morphism from RS Att to (RS Att)# yields our 
desired morphism of sheaves:

l : S Att�A.

Indeed, on stalks, this morphism lφ : Att(φ) �Aφ
∼= RAtt(φ) is precisely the embedding j . An 

analogous construction may be carried out for the free attractor sheaf, which on stalks may be 
seen as sending attractors to their corresponding generator in the monoid ring Z2Att(φ).

Remark 7.11. Similar constructions can be applied to sheaves in other dynamical contexts. The 
construction via the functor Z2 : Monoid� Ring works for all of the above examples since 
both bounded, distributive lattices and semilattices compose subcategories of the category of 
(commutative) monoids. Of particular interest is the free Morse sheaf

Morse := (
Z2S

Morse)# : O(DS(T ,X))�Ring.

Remark 7.12. The short exact sequence in (18) for Att yields:

0 kerj Att A 0,
⊂ j

(20)

where the stalks

Aφ = RAtt(φ) and Attφ = Z2Att(φ)

are the attractor ring at φ and the free attractor ring over Z2 at φ respectively. We define this to 
be the fundamental short exact sequence of the attractor sheaf. The fundamental exact sequence 
allows us to relate the sheaves A and Morse. The generators of Att and the ring structure of A
recover the attractor lattice sheaf S Att.

Remark 7.13. An alternative way to define the sheaves A and Att is a direct definition via 
étalé spaces. In the case of Att we define an étalé space �[Z2Att] using the stable C-structure (
Z2Att, Z2ANbhd, Z2(ω)

)
via the monoid ring functor. The stability follows from the fact that 

stability is preserved under free sums. We obtain the étalé space π : �[Z2Att] �DS(T , X) and 
the associated sheaf of sections S Z2Att. It holds that S Z2Att ∼= Att. For the Boolean ring functor 
it is more involved to prove that 

(
RAtt, RANbhd, R(ω)

)
is a continuation frame, but S RAtt ∼= A.
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7.4. Finite sublattice and Morse representation sheaves

Following Lemma 5.8, we also have an Lat-valued étalé space �[subFAtt], encoding the con-
tinuation of finite sublattices of attractors. As earlier, we can consider the corresponding sheaf of 
sections S subFAtt : DS(T , X) � Lat. For an open set � ⊂ DS(T , X), a section in S subFAtt(�)

assigns to each dynamical system φ ∈ � a finite sublattice of A ⊂ Att(φ). The lattice operations 
on S subFAtt(�), on stalks, send two finite sublattices to their intersection or the smallest sub-
lattice containing both. This yields the following question concerning the structure of the sheaf 
S subFAtt:

Can we view sections of S subFAtt as a lattice of sections of S Att?

This is not always possible, see Example 9.6.
To understand this structure one needs to be able to relate the sheaves S subFAtt and S Att. 

Define the following étalé space on DS(T , X):

� := {
(φ,A,A) ∈ �[subFAtt] • �[Att] : A ∈ A

}
.

The projection from �[subFAtt] • �[Att] remains a surjective local homeomorphism when re-
stricted to the subspace �. There is a commutative diagram of restriction maps for étalé spaces:

�[subFAtt] • �[Att]

�[subFAtt] � �[Att]

DS(T ,X)

π
π

π

Denote the sheaf of sections associated to the étalé space � by

E subFAtt : O(DS(T ,X))� Set.

A section of E subFAtt traces out the continuation of a finite sublattice of attractors, as well as a 
specific attractor in that sublattice. From the diagram, there are two morphisms:

q : E subFAtt�S Att r : E subFAtt�S subFAtt,

which restricts sections to their attractor and finite sublattice components respectively. For an 
open set � ⊂ DS(T , X) and a section ν ∈ S subFAtt(�), we can consider the set r−1

� (ν) consisting 
of sections of E subFAtt which agree with ν on their finite sublattice component. This set has 
a bounded distributive lattice structure, defined on the attractor component. Suppose σ, σ ′ ∈
r−1
� (ν):

σ(φ) = (ν(φ),A), σ ′(φ) = (ν(φ),A′), (σ ∧ σ ′)(φ) := (ν(φ),A ∧ A′).
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The meet operation is defined similarly. We can then pass this lattice through q , and achieve a 
bounded distributive lattice of sections of S Att:

q� : r−1
� (ν) ⊂ E subFAtt(�)�S Att(�)

We make the following observations:

• For any section σ ∈ q�

(
r−1
� (ν)

)
, with σ(φ) = (φ, A), we have that A ∈ A, where ν(φ) =

(φ, A). In other words, the value of σ at φ is contained in the value of ν at φ.
• Composing the stalk restriction map ρφ : S Att(�) � Att(φ) yields the composite lattice ho-

momorphism

f�,φ : q�

(
r−1
� (ν)

)
� A ⊂ Att(φ),

where ν(φ) = (φ, A).
• If f�,φ is surjective at every φ ∈ �, we retrieve ν from these sections:

ν(φ) = (
φ, {Aσ }), where σ ∈ q�

(
r−1
� (ν)

)
, σ (φ) = (φ,Aσ ).

Proposition 7.14. Let ν ∈ S subFAtt(�) for some open set � ⊂ DS(T , X) and let φ ∈ �. Then, 
there is an open neighborhood �′ of φ such that f�′,φ′ defined by ν

∣∣
�′ is surjective for all 

φ′ ∈ �′.

Proof. By Lemma 7.10 ν yields a neighborhood �′ of φ upon which ν
∣∣
�′ = �[ω;N]∣∣

�′ for 
some N ∈ subFANbhd(φ). For each U ∈ N, we have a section �[ω;U ]∣∣

�′ ∈ S Att(�′). Indeed, 
we can define the following section in E subFAtt(�′):

φ ��
(
φ,ωφ(N),ωφ(U)

)
which maps to �[ω;U ]∣∣

�′ under q , and therefore �[ω;U ]∣∣
�′ ∈ q�′

(
r−1
�′ (ν)

)
. Let φ′ ∈ �′, and 

A ∈ A, where ν(φ′) = (φ′, A). Then A = ωψ(U) for some U ∈ N, since ωψ(N) = A. Moreover, 
since f�′,φ′

(
�[ω;U ]∣∣

�′
)= A for arbitrary choices of φ′ and A, the proof is complete. �

Proposition 7.14 justifies that locally a section in S subFAtt may be interpreted as a finite dis-
tributive lattice of sections in S Att. We will investigate when this interpretation extends globally 
at a later stage.

Dually, we can consider the continuation frame 
(
MRepr, MTess, ΔΔΔ

)
, which defines the Lat-

valued Morse representation sheaf S MRepr, cf. Sect. 5.2, which generalizes the construction in 
[23]. Applying Proposition 4.9 to the natural transformation μ : subFAtt� MRepr with stable 
extension τ : subFANbhd�MTess yields a sheaf isomorphism

μ : S subFAtt�S MRepr.

The lattice structure of S MRepr allows common coarsings and refinements of Morse representa-
tions: let σM, σ ′ ∈ S MRepr(�), then
M
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σM ∨ σ ′
M ∈ S MRepr(�) and σM ∧ σ ′

M ∈ S MRepr(�),

the common coarsening and common refinement of Morse representations continuations respec-
tively. The binary operations are defined in the sheaf S subFAtt via

μ−1(σM) ∧ μ−1(σ ′
M) and μ−1(σM) ∨ μ−1(σ ′

M),

respectively. We can dualize the earlier theory for S subFAtt to describe sections of S MRepr. For a 
section ζ ∈ MRepr(�), there is a corresponding section ν := μ(ζ ) ∈ S subFAtt(�). We again have 
f�,φ : q�(r−1

� (ν)) � A where ν(φ) = (φ, A). Suppose q�(r−1
� (ν)) is finite. We can dualize to 

achieve:

g�,φ : M(A)� P�,

where P� denotes the poset of join-irreducible elements of q�(r−1
� (ν)). The map g�,φ composes 

the isomorphism between J(A), the join-irreducible elements of A, and M(A) with the dual of 
f�,φ . The Morse representation M(A) is exactly the value of ζ at φ, in other words, ζ(φ) =
(φ, M(A)). If the lattice morphism f�,φ is surjective, then g�,φ is an embedding and thus a 
Morse decomposition, cf. [6, Def. 7]. Thus we get an analogous statement to Proposition 7.14.

Corollary 7.15. Let ζ ∈ S MRepr(�) for an open � ⊂ DS(T , X) such that q�(r−1
� (μ�(ζ ))) is 

finite, and φ ∈ �. Then there is an open neighborhood �′ of φ such that g�′,φ′ is a Morse 
decomposition for all φ′ ∈ �′.

8. Parameter spaces and pullbacks

In this section we discuss continuation frames for parametrized families of dynamical systems 
and how the associated sheaves can be constructed.

8.1. Parametrized dynamical systems

Let � be a topological space. In keeping with the spirit of the paper we keep the conditions 
mild but in practical situations � is a CW-space.

Definition 8.1. Let X be a compact topological space. A parametrized dynamical system over 
� on X is a continuous map φ : T × X × � �X such that φλ := φ(·, ·, λ) ∈ DS(T , X) for all 
λ ∈ �.

The category of dynamical systems DS(T , X) is a function space equipped with the compact-
open topology. For a parametrized dynamical system φ we define the transpose φ∗ : � �
DS(T , X) by

φ∗(λ) = φλ := φ(·, ·, λ).

The transpose φ∗ : � � DS(T , X) is a continuous map without additional assumptions on the 
topological spaces � and X, cf. D.
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For the continuation frame (Att, ANbhd, ω) on DS(T , X) a parametrized dynamical system 
yields a pullback étalé space on �:

φ−1∗ �[Att] := {
(λ,φ,A) ∈ � × �[Att] | φ∗(λ) = π(φ,A) = φ

}
,

i.e. the following diagram commutes

φ−1∗ �[Att] �[Att]

� DS(T ,X)

(λ,φ,A) ��(φ,A)

(λ,φ,A) ��λ π

φ∗

where φ−1∗ �[Att] is the pullback in the category of topological spaces, cf. [44, Sect. I.3]. From 
[32, Prop. 2.4.9] it follow that φ−1∗ �[Att] �� is an étalé space over �. The binary operations 
on �[Att] can be verified to be continuous on the inverse image étalé space. As before we obtain 
the following BDLat-valued pullback sheaf

φ−1∗ S Att : O(�)� BDLat,

as the sheaf of sections of φ−1∗ �[Att]. Applying the Boolean ring functor R to the sheaf of 
sections yields a ring valued sheaf:

Aφ∗ := (Rφ−1∗ S Att)# : O(�)�Ring.

The ringed space (�, Aφ∗) encodes the continuation data of attractors for the parametrized dy-
namical system. Similarly, for the monoid ring functor Z2· we obtain:

Attφ∗ := (Z2φ
−1∗ S Att)# : O(�)�Ring,

where the multiplication is inherited from the monoidal structure of Att, cf. Section 6.3. We are 
now in the setting of sheaf cohomology. Since the category of sheaves of abelian groups has 
enough injectives, the ith sheaf cohomology groups may be defined as the right derived functors 
of the global section functor. A more direct and detailed construction can be found in [44]. We 
apply these, and their relative versions, to the sheaves Aφ∗ and Attφ∗ . Theorem 8.7 and the 
later sections will show the cohomology groups Hi(�, Aφ∗) and Hi(�, �′; Aφ∗) are algebraic 
invariants which can detect bifurcations.

Remark 8.2. The sheaf Aφ∗ can be alternatively defined as follows. The Boolean ring functor 
yields the étalé space �[RAtt] and the associated sheaf of sections φ−1∗ S RAtt, which defines the 
sheaf as the pullback sheaf with respect to φ∗.

8.2. Conjugate dynamical systems and homeomorphic étalé spaces

We start off with the basic notion of conjugacy in dynamical systems.
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Definition 8.3. Let X and Y be compact topological spaces, and let φ∗ : � � DS(T , X) and 
ψ∗ : � � DS(T , Y) be parametrized dynamical systems. A conjugacy between φ∗ and ψ∗ is a 
continuous map h : � × X� Y and a continuous reparametrization τ : � × T × X� T , such 
that

(i) hλ × τλ := h(λ, ·) × τ(λ, ·, ·) is a conjugacy in hom(φλ, ψλ) for all λ ∈ �;
(ii) hλ(Xi) = Yi uniformly for all λ ∈ �, where Xi and Yi are the connected components of X

and Y respectively.

If a conjugacy h exists, then φ∗ and ψ∗ are said to be conjugate parametrized dynamical systems.

Remark 8.4. Assumption (ii) is always satisfied pointwise for λ by appropriately indexing the 
components of X and Y . The uniformity in the above definition is not guaranteed since no re-
strictions on the topology of � are required. For specific topologies on � condition (ii) may be 
superfluous.

Remark 8.5. One may also consider quasiconjugacies between parametrized dynamical systems 
over �.

Since hλ is a conjugacy we know from Remark 3.5 that the push-forward Uλ �� hλ(Uλ) is an 
attracting neighborhood for ψλ and similarly, the push-forward Aλ �� hλ(Aλ) is an attractor for 
ψλ.

Lemma 8.6. The following diagram commutes:

ANbhd(φλ) ANbhd(ψλ)

Att(φλ) Att(ψλ)

ω
φλ ω

ψλ

∼=

∼=

Proof. Indeed, the maps from above we have Uλ �� hλ(Uλ) �� ωψλ

(
hλ(Uλ)

)
. From below 

yields Uλ �� Aλ = ωφλ(Uλ) �� hλ(Aλ). Since h is a conjugacy it follows from Remark 3.5
that Lemma 3.2 applies to both hλ and (hλ)−1. This gives:

ωψλ

(
hλ(Uλ)

)= ωψλ

(
hλ
(
ωφλ(Uλ)

))= ωψλ

(
hλ(Aλ)

)= hλ(Aλ), (21)

which proves commutativity. �
Lemma 8.6 holds for all λ ∈ � and which provides stalkwise isomorphisms between the 

associated sheaves of attractors. This however does not give isomorphic sheaves necessarily!

Theorem 8.7 (Conjugacy Invariance Theorem). Let X, Y be compact metric spaces. Suppose 
φ∗ : � � DS(T , X) and ψ∗ : � � DS(T , Y) are conjugate parametrized dynamical systems. 
Then, the étalé spaces φ−1�[Att] and ψ−1�[Att] are homeomorphic.
∗ ∗
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Proof. From Lemma 8.6 we have the following commutative diagram of maps:

φ−1∗ �[Att] ψ−1∗ �[Att]

�

h∗

π π

where h∗ is defined by (λ, φλ, Aλ) �� h∗(λ, φλ, Aλ) := (
λ, ψλ, hλ(Aλ)

)
. It is sufficient to show 

continuity, since if h∗ is continuous, then h∗ is a local homeomorphism, in which case h−1∗ is a 
also a local homeomorphism (h∗ is a bijection), cf. [32, Prop. 2.4.8]. This proves that φ−1∗ �[Att]
and ψ−1∗ �[Att] are homeomorphic.

In order to prove continuity we argue as follows. Consider the following commutative diagram

φ−1∗ �[Att]

φ−1∗ [ANbhd;U ] �

π
φ−1∗ �[ω;U ]

⊂

where φ−1∗ [ANbhd; U ] = {
λ | U ∈ ANbhd(φλ)

}
and φ−1∗ �[ω; U ](λ) = (

λ, φλ, ωφλ(U)
)
. Let 

D0 ⊂ � be an open neighborhood of λ0 ∈ � and let

ψ−1∗ �
[
ω;hλ0(Uλ0)

]
(D0) =

{(
λ,ψλ,ωψλ

(
hλ0(Uλ0)

)) | λ ∈ D0

}
be an open neighborhood of h∗

(
λ0, φλ, Aλ0

)= (
λ0, ψλ, hλ0(Aλ0)

)
in ψ−1∗ �[Att] for some com-

pact Uλ0 ∈ ANbhd(φλ0). In order to establish continuity we seek a neighborhood D′
0 ⊂ D0 ⊂ �

such that

h∗
(
φ−1∗ �[ω;Uλ0](D′

0)
)

=
{(

λ,ψλ,hλ
(
ωφλ(Uλ0)

)) | λ ∈ D′
0

}
=
{(

λ,ψλ,ωψλ

(
hλ(Uλ0)

)) | λ ∈ D′
0

}
⊂ ψ−1∗ �

[
ω;hλ0(Uλ0)

]
(D0),

where the second equality follows from Lemma 8.6, Eqn. (21). This is equivalent to saying

ωψλ

(
hλ(Uλ0)

)= ωψλ

(
hλ0(Uλ0)

)
, ∀λ ∈ D′

0.

For notational convenience we write

U := hλ0(Uλ0) ∈ ANbhd(ψλ0), and A = hλ0(Aλ0) = ωψλ0 (U
′) ∈ Att(ψλ0).

We rephrase the above condition as:

ωψλ

(
hλ(Uλ0)

)= ωψλ(U), ∀λ ∈ D′ . (22)
0
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For Uλ0 = ∅, or for Uλ0 =�i Xi ⊂ X, any union of connected components of X, Eqn. (22) is 
satisfied by the uniform conjugacy condition in Defn. 8.3(ii), cf. Remark 8.4. For the remainder 
of the proof we assume Uλ0 �= ∅ and Uλ0 �= �i Xi , for all unions of connected components of 
X. Therefore, we may carry out the arguments for the components Uλ0

i = Uλ0 ∩ Xi �= ∅, Xi .
Choose a compact attracting neighborhood U ′ ∈ ANbhd(ψλ0) such that U ′ ⊂ intU and 

ωψλ0 (U
′) = A. Indeed, since A is an attractor clUc ∩ A = ∅, cf. [2, Lemma 3.23]. Therefore 

there exist open sets N, N ′ such that A ⊂ N , clUc ⊂ N ′ and N ∩ N ′ = ∅. As a matter of fact 
clN ∩ N ′ = ∅. Define U ′ = clN . By construction A∗ ⊂ Uc ⊂ clUc ⊂ N ′ and thus U ′ ∩ A∗ = ∅
which proves that (i) ωψλ0 (U

′) = A, (ii) A ⊂ N ⊂ U ′, (iii) U ′ = clN ⊂ N ′ c ⊂ (
clUc

)c = intU , 
and thus U ′ is an attracting neighborhood satisfying the properties stated above, cf. [2, Lemma 
3.21]. From the fact that U �= �i Yi , a union of components, it follows that intU � U . Thus 
by Property (iii) there exists a δ1 > 0 such that Bδ1(U

′) ⊂ U and therefore dH(U, U ′) � δ1 > 0, 
where dH is the Hausdorff metric on the space H(X) of compact subsets of X.

By the same token we can choose a compact repelling neighborhood V ∈ RNbhd(ψλ0) such 
that V ∩U = ∅ and ωψλ0 (V

c) = A. Indeed, repeat the above arguments starting with U ∩A∗ = ∅. 
V is compact, so there exists a δ2 > 0 such that dH(U, V ) � δ2 > 0.

Since, ψ−1∗ �
[
ω; U]

, ψ−1∗ �
[
ω; U ′] and ψ−1∗ �

[
ω; V c

]
define local sections in ψ−1∗ �[Att]

over ψ−1∗ [ANbhd; U ], ψ−1∗ [ANbhd; U ′] and ψ−1∗ [ANbhd; V c] respectively, and since

ψ−1∗ �
[
ω;U]

(λ0) = ψ−1∗ �
[
ω;U ′](λ0) = ψ−1∗ �

[
ω;V c

]
(λ0)

there exists an open set E0 ⊂ � on which three sections coincide, i.e.

Bλ := ωψλ(U) = ωψλ(U ′) = ωψλ(V c), ∀λ ∈ E0,

and Bλ ⊂ intU , Bλ ⊂ intU ′ and Bλ ⊂ intV c for all λ ∈ E0.
Let Ũ be any compact neighborhood such that dH(U, ̃U) < δ = min{δ1, δ2}/2 and let λ ∈ E0. 

Then,

Bλ ⊂ U ′ ⊂ Ũ , Ũ ∩ (Bλ)∗ ⊂ Ũ ∩ V = ∅,

which by [2, Lemma 3.21] implies that ωψλ(Ũ) = Bλ for all λ ∈ E0.
Finally, using the continuity of hλ

H in Lemma D.1, choose an open sets D′
0 ⊂ E0 ∩ D0 such 

that dH
(
hλ(Uλ0), U

)
< δ for all λ ∈ D′

0. By the previous we choose Ũ = hλ(Uλ0) which proves 
that

ωψλ

(
hλ(Uλ0)

)= Bλ = ωψλ(U), ∀λ ∈ D′
0,

establishing (22) and thereby the theorem. �
Remark 8.8. The condition that the spaces X and Y are compact metric spaces is used at several 
places in the proof and in particular for using the Hausdorff metric. The characterizations of 
attracting and repelling neighborhoods via attractors and dual repellers at least work in compact 
Hausdorff spaces.
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Theorem 8.7 can be extended to other structures. Since φ−1∗ �[Att] is homeomorphic (as 
a sheaf of sets) to φ−1∗ �[Rep], we can get a homeomorphism between φ−1∗ �[Rep] and 
ψ−1∗ �[Rep]. There is the following commutative diagram for Morse sets:

φ−1∗ �[Att] • φ−1∗ �[Att] ψ−1∗ �[Att] • ψ−1∗ �[Att]

φ−1∗ �[Morse] ψ−1∗ �[Morse]

�

�[CAtt] �[CAtt]

where the top horizontal map is given by

(λ,φλ,A), (λ,φλ,A′) �� (λ,ψλ,hλ(A)), (λ,ψλ,hλ(A′))

and the bottom horizontal map is given by

(λ,φλ,M) �� (λ,ψλ,hλ(M)),

which, using a similar argument to Proposition 4.9, establishes that the étalé spaces φ−1∗ �[Morse]
and ψ−1∗ �[Morse] are homeomorphic.

Corollary 8.9. Let X and Y be homeomorphic compact metric spaces and let AttX and AttY be 
the attractor functors on DS(T , X) and DS(T , Y) respectively. Then, the étalé spaces �[AttX]
and �[AttY ] are homeomorphic.

Proof. Let h : X� Y be a homeomorphism and let � = DS(T , X). Then, φ∗ is the identity 
map. The map ψ∗ : � �DS(T , Y) is defined as follows: � � φ �� h ◦ φ ◦ h−1 = ψ . Then,

h
(
φt (x)

)= h
(
φt

(
h−1(y)

))= ψt(y) = ψt

(
h(x)

)
,

which proves that φ∗ and ψ∗ are conjugate parametrized dynamical systems. �
9. Bifurcations and sheaf cohomology

Sheaves attach both local and global data to a topological space. In our setting of continuation, 
they encode how dynamical structures vary with parameter values on open sets. Oftentimes, 
given an open cover of the topological space, one can glue together the local information on each 
element of the cover to obtain global information.

However, sometimes local information fails to extend globally. Sheaf cohomology, which can 
be viewed as a generalization of singular cohomology, is a powerful tool for studying this. An 
interpretation for singular cohomology groups is that they constitute obstructions to a topological 
space being contractible. Sheaf cohomology generalizes this by representing barriers for local 
sections to extend to global sections.

One can always solve an attractor’s continuation locally using an attracting neighborhood. 
But this problem is sometimes impossible globally. Sheaf cohomology provides a framework 
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for quantifying when and how this occurs. Together with the conjugacy invariance theorem, this 
will build an algebraic invariant for parametrized dynamical systems, which can be used to study 
bifurcations.

Recall that a parametrized dynamical system on a topological space � is a continuous map 
φ∗ : � � DS(T , X) such that φ∗(λ) : T × X � X is a dynamical system for all λ ∈ �. In 
principle � may be DS(T , X) but in practice simpler topological spaces for � are used. In 
this section, to utilize Theorem 8.7, we assume X is a compact metric space.

Definition 9.1. A parametrized dynamical system φ∗ : � � DS(T , X) is stable at a point λ0 ∈
� if there exists an open neighborhood �′ � λ0 such that φ∗

∣∣
�′ is conjugate to the constant 

parametrization θ∗ : �′� DS(T , X), given by λ �� φ∗(λ0) for all λ ∈ �′. If λ0 is not stable, it 
is called a bifurcation point. A parametrized dynamical system φ∗ is stable on a subset �′ ⊂ �

if it is stable at every point in �′ ⊂ �.
If a parametrized dynamical system φ∗ : � � DS(T , X) is conjugate to the constant 

parametrization θ∗ : � �DS(T , X) on � it is called uniformly stable.

In general stability of a parametrized dynamical system does not imply uniform stability. For 
instance if � is not connected then φ∗ need not be conjugate to a fixed constant system θ∗. This 
example indicates that stability does not imply uniform stability in general if � is disconnected. 
See Example 9.5 for an counter example with a connected space �.

9.1. Locally constant sheaves

Let φ∗ : � �DS(T , X) be a parametrized dynamical system. From the previous we have the 
induced attractor sheaf and free attractor sheaf over �:

Aφ∗ : O(�)�Ring, Attφ∗ : O(�)�Ring.

The ringed spaces (�, Aφ∗) and (�, Attφ∗) encode the continuation data of attractors for the 
parametrized dynamical system. At a later stage we also include the attracting neighborhood 
sheaf and free attracting neighborhood sheaf N and ANbhd respectively.

Recall that for an abelian group E ∈ Ab the presheaf E : O(�) � Ab defined by E (�′) :={
σ : �′� E constant

}
, �′ ⊂ � open, is called the constant presheaf over � with values in E. 

The sheafification E := E # is called the constant sheaf over � with values in E. The constant 
sheaf can be characterized as the sheaf of locally constant functions with values in E, i.e.

E(�′) = {
σ : �′� E locally constant

}
, �′ ⊂ �, open.

If we equip E with the discrete topology then such functions are continuous functions σ : �′� E. 
This corresponds to the sheaf of section of the étalé space � × E, with E equipped with the dis-
crete topology, cf. [31, Sect. 2.4], [45, Ex. 3.31 and 3.40]. If �′ ⊂ � is open and connected then 
E(�′) ∼= E. For an open set whose connected components are open then E(�′) is isomorphic to a 
direct product of copies of E, one for each connected component, cf. [46, Ex. 1.0.3]. An abelian 
sheaf F is called locally constant is there exists an open covering {�i} of � such that F |�i

is a constant sheaf for all i. This is equivalent to saying that every point allows a neighborhood 
�′ ⊂ � such that F |�′ is constant, cf. [41, Defn. I.1.9]. Locally constant sheaves are sheaves of 
sections of covering spaces, [45, Ex. 3.41].
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Lemma 9.2. Let θ∗ : � �DS(T , X) be a constant parametrization. Then, the sheaves Aθ∗ and 
Attθ∗ are constant sheaves.

Proof. The pullback étalé space θ−1∗ �[Att] is given by

θ−1∗ �[Att] ∼= � × A,

where A = Att(φλ0), for some λ0 ∈ �, is given the discrete topology. Therefore the sheaf of sec-
tions θ−1∗ S Att is a constant sheaf. Consequently, Aθ∗ and Attθ∗ are also constant sheaves. �
Lemma 9.3. Let φ∗ : � � DS(T , X) be stable. Then, the sheaves Aφ∗ and Attφ∗ are locally 
constant sheaves.

Proof. Pick a point λ0 ∈ �. Since φ∗ is stable there exists a neighborhood �′ � λ0 such that 
φ∗|�′ is conjugate to the constant parametrization. By the Conjugacy Invariance Theorem in 8.7
we have that Aφ∗ |�′ ∼= Aθ∗ |�′ as sheaves. The latter is a constant sheaf over �′ and therefore 
Aφ∗ |�′ is a constant sheaf over �′ by definition. We conclude that Aφ∗ is locally constant. The 
same applies to Attφ∗ . �
Remark 9.4. If φ∗ is uniformly stable then φ∗ is conjugate to a constant parametrization θ∗ on 
�. The associated étalé spaces are homeomorphic by Theorem 8.7 and thus the sheaves Aφ∗ and 
Attφ∗ are constant sheaves is this case.

Example 9.5. Let X be the 2-point compactification of the line and consider the following family 
of differential equations

ẋ = sin(x + λ), x ∈R, λ ∈ S1 = R/2πZ.

The above system defines a 1-parameter family of flows φ∗ : � �DS(R, X) of flows on X over 
parameter space � = S1. Via the conjugacy x �� x − λ we conclude that φ∗ is stable and thus 
the attractor sheaf Aφ∗ is a locally constant sheaf as indicated by Lemma 9.3. Since ±∞ are not 
attractors, the only global sections in Aφ∗ are ∅ and X. The stalks of Aφ∗ are infinite complete, 
atomic Boolean algebras which proves that Aφ∗ is not a constant sheaf.

The above example shows that even if � is connected, then a stable system need not be 
uniformly stable. Indeed, φ∗ in Example 9.5 allows a conjugacy over � = S1, then the attractor 
sheaf Aφ∗ is constant which contradicts above statement that Aφ∗ is locally constant but not 
constant.

Example 9.6. Define a vector field restricted to the compact subset [−2, 2] ×[−2, 2] of R2:

F(x, y) = (−x(x + 1)(x − 1),−y).

We can rotate the vector field with a parameter θ :

Fθ(x, y) = R−θF (Rθ (x, y)),
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Fig. 4. An illustration of Example 9.6. The vector field at the cross section is rotated over the parameter space S1. The 
system is stable, so the attractor sheaf is locally constant. However, it is impossible to continue either attracting fixed 
point globally.

where Rθ denotes the rotation matrix of angle θ . Since Fπ(x, y) = F0(x, y), gluing at 0 and π
(not 2π ) gives us a parametrized dynamical system φ∗ : S1�DS(R, [0, 2] × [0, 2]) by integrat-
ing the vector field. The invariant set [−1, 1] ×{0} undergoes a half-twist over S1. There are only 
three global sections of φ−1∗ S Att:

θ �� ∅, θ ��Rθ({(1,0), (−1,0)}), θ ��Rθ([−1,1] × {0}).
Alas, each stalk is a five element lattice and S1 is connected, so φ−1∗ S Att is not the constant sheaf. 
Additionally, the five element attractor lattice is a global section in φ−1∗ S subFAtt, but cannot be 
represented as a collection of global sections of φ−1∗ S Att. (Fig. 4.)

As pointed out above, a locally constant sheaf is the sheaf of sections of a covering space. 
With additional conditions on � such sheaves may be constant sheaves.

Proposition 9.7 (cf. [47], Prop. 4.20 and [45], Prop. 7.5). Let � be a simply connected and 
locally path connected topological space, and let F be a locally constant sheaf of rings on �. 
Then, F is a constant sheaf.

The same statement holds for contractible spaces �, cf. [48, Exer. II.4]. We can apply 
the above proposition to the attractor sheaf Aφ∗ and free attractor sheaf Attφ∗ for simple 
parametrized systems φ∗.

Corollary 9.8. Let φ∗ : � � DS(T , X) be stable and let � be a simply connected and locally 
path connected topological space. Then, Aφ∗ and Attφ∗ are constant sheaves.

For constant sheaves the sheaf cohomology can be related to singular cohomology which is a 
useful tool in our treatment of bifurcations.

Proposition 9.9 (cf. [49], Thm. 9). Let � be a locally contractible topological space ([50, p. 
57]), and let R be an arbitrary ring. If R denotes the constant sheaf with values in R, then 
Hk(�; R) ∼= Hk (�; R) for all k.
sing
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If we combine Lemma 9.3, Corollary 9.8 and Proposition 9.9 we obtain a result that deter-
mines the sheaf cohomology of the attractor sheaves for simple parametrized dynamical systems.

Corollary 9.10. Let φ∗ : � �DS(T , X) be stable and let � be a locally contractible and simply 
connected topological space. Then,

Hk(�;Aφ∗) ∼= Hk
sing(�;Aφ∗

λ0
), ∀k,

where Aφ∗
λ0

∈ Ring is a stalk at any λ0 ∈ �. A similar statement holds for Hk(�; Attφ∗).

Proof. Lemma 9.3 implies that Aφ∗ is a constant sheaf. A locally contractible space is lo-
cally simply connected and locally path connected, but not necessarily simply connected. In 
combination with the condition of simple connectedness we can combine Corollary 9.8 and 
Proposition 9.9, which completes the proof. �
9.2. Sufficient conditions

The statements about sheaf cohomology in Section 9.1 imply the following sufficient condi-
tion for bifurcations to exist. The theorems stated for the attractor sheaf Aφ∗ can also be stated 
for the free attractor sheaf Attφ∗ .

Theorem 9.11. Let � be both contractible and locally contractible. Suppose that

Hk(�;Aφ∗) �= 0, for some k > 0.

Then, there exists a bifurcation point in λ0 ∈ �.

Proof. Suppose there are no bifurcation points. This implies that φ∗ is stable which by Corol-
lary 9.10 implies that Hk(�; Aφ∗) ∼= Hk

sing(�; R) for all k (where R is isomorphic to a stalk 

of Aφ∗ ). Since � is contractible, we have that Hk
sing(�; R) = 0 for all k > 0. Combining these 

statements yields that Hk(�; Aφ∗) ∼= Hk
sing(�; R) = 0 for all k > 0, which contradicts the above 

assumptions. �
As we will see in Section 10 the above criterion does not always detect bifurcations. In order 

to get a more in depth look into local bifurcations we consider its relative sheaf cohomology for 
Aφ∗ . We use the following lemma about long exact sequences in sheaf cohomology.

Lemma 9.12. Let F be a sheaf of rings on � and let �′ i
↪−��. Assume that the induced homo-

morphisms ik∗ : Hk(�; F ) �Hk(�′; F ) are isomorphisms for all k � 0. Then,

Hk(�,�′;F ) ∼= 0, ∀k � 0.
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Proof. For triple (�′, ∅) 
i

↪−� (�, ∅) 
j

↪−� (�, �′) we have the long exact sequence,

0 H 0(�,�′;F ) H 0(�;F ) H 0(�′;F )

H 1(�,�′;F ) H 1(�;F ) H 1(�′;F ) · · · .

δ0 j0∗ i0∗

δ1
j1∗ i1∗ δ2

For the exactness of the maps and the isomorphisms ik∗ we have: ker j0∗ = im δ0 = 0, which 
proves that j0∗ is injective. Furthermore, since i0∗ is an isomorphism we have ker i0∗ = 0 = im j0∗
and thus H 0(�, �′; F ) ∼= 0. The remaining relative homology groups are determined as follows: 
ker δ1 = im i0∗ = H 0(�′; F ) ∼= H 0(�; F ). Therefore, ker j1∗ = im δ1 = 0, which shows that 
j1∗ is injective. Furthermore, ker i1∗ = 0 = im j1∗ , consequently H 1(�, �′; F ) ∼= 0. The same 
argument can be repeated now for all other k. �

As an immediate consequence of the long exact sequence we have the following corollary if 
we apply Lemma 9.12 to the attractor sheaf Aφ∗ .

Corollary 9.13. Suppose Hk(�, �′; Aφ∗) �= 0 for some k. Then, there exist k0 � 0 for which the 
inclusion i does not imply an isomorphism ik0∗ : Hk0(�; Aφ∗) �Hk0(�′; Aφ∗).

The relative sheaf cohomology can be used to formulate an analogous criterion as Theo-
rem 9.11.

Theorem 9.14. Let � be both contractible and locally contractible, and let �′ ⊂ � be a defor-
mation retract of � with φ∗ stable on �′. Suppose that

Hk(�,�′;Aφ∗) �= 0, for some k � 0.

Then, there exists a bifurcation point in λ0 ∈ � ��′.

Proof. Suppose there are no bifurcation points in � � �′. This implies that φ∗ is stable on 
�. Since � is contractible and locally contractible, it is simply connected and locally path 
connected. It follows from Proposition 9.8 that Aφ∗ is a constant sheaf on �. Since �′ is a defor-
mation retract of �, the same holds for �′ and Aφ∗ |�′ ∼= Aφ∗ . This implies that H 0(�; Aφ∗) ∼=
H 0(�′; Aφ∗). By Corollary 9.10, since ik∗ : Hk(�; R) �Hk(�′; R) is an isomorphism for all k, 
we have that Hk(�; Aφ∗) ∼= Hk(�′; Aφ∗) ∼= 0 for all k � 1. Combining these statements gives 
Hk(�; Aφ∗) ∼= Hk(�′; Aφ∗) for all k. This implies by Lemma 9.12 that Hk(�, �′; Aφ∗) ∼= 0
for all k, which contradicts the assumption that Hk(�, �′; Aφ∗) �= 0 for some k. Therefore, φ∗
is not stable on � ��′ and there exists a bifurcation point λ0 ∈ � ��′. �

In the interest of working with computations, we introduce some terminology for the attrac-
tor sheaf Aφ∗ . Recall the morphism l : S Att �A, which on stalks is exactly the embedding 
j : Att(φ) � RAtt(φ). After pulling back by a parametrization φ∗, we get a morphism

l : φ−1∗ S Att�Aφ∗ .
168



K.A. Dowling, W.D. Kalies and R.C.A.M. Vandervorst Journal of Differential Equations 367 (2023) 124–198
Fix an open set �. Then the following is a collection of sections in Aφ∗(�):

B� := {l(σ ) : σ is a join-irreducible element of φ−1∗ S Att(�)}.

When B� is a basis for Aφ∗(�) as a vector space over Z2, we refer to this as the canonical 
basis. This happens often in our computations when the lattices of sections are finite, and when 
the sheafification morphisms are isomorphisms on �.

10. Examples of one-parameter bifurcations

In this section we discuss a number of standard one-parameter bifurcations such as a saddle-
node bifurcation and a pitchfork bifurcation. We will also examine bifurcation at multiple bifur-
cation points. The objective is to show that sheaf cohomology picks up bifurcations. At a later 
stage we will discuss the more practical side of computing sheaf cohomology from limited data.

10.1. One-parameter bifurcations at a single parameter value

In this subsection we list three fundamental bifurcations in one-parameter systems. We apply 
the above results to compute the sheaf cohomology and to compare the criteria. For example if 
� =R or � = I , a bounded interval, then the above theorem applies. This is of interest for one-
parameter bifurcations. The following lemma addresses the case where φ∗ has one bifurcation 
point on R, which will assist in computations.

Lemma 10.1. Let F be a sheaf of rings on � = R, such that F is a constant sheaf on both 
(−∞, λ0) and (λ0, ∞) for some λ0 ∈ R. Then, F is acyclic, i.e. Hk(�, F ) = 0 for all k � 1, 
and �(F ) ∼= Fλ0 .

Proof. Let ε > 0 and let Bε denote the interval (λ0 − ε, λ0 + ε). There is a restriction cohomo-
morphism r : F � F

∣∣
Bε

. We will show this induces an isomorphism of cohomology:

r∗ : H ∗(R;F )�H ∗(Bε; F
∣∣
Bε

)
. (23)

First we address global sections. Because F is constant on (−∞, λ0) and (λ0, ∞), sections in 
�(F

∣∣
Bε

) extend uniquely to sections in �(F ). Thus, r∗
0 : �(F ) � �(F

∣∣
Bε

) is an isomorphism. 

For k > 1, Hk(R; F ) and Hk
(
Bε; F

∣∣
Bε

)
vanish, since intervals have covering dimension 1, cf. 

[48, Lemma 2.7.3 and Proposition 3.2.2]. So the maps

r∗
k : Hk(R;F )�Hk

(
Bε; F

∣∣
Bε

)
are trivially isomorphisms. Now we consider k = 1. Let R∗ = R � {λ0}, so that Bε and R∗ form 
a cover of R. Note that F

∣∣
R∗ is locally constant, with vanishing higher cohomology groups. 

There is a Mayer-Vietoris exact sequence:
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0 �(F ) �
(
F
∣∣
Bε

)⊕ �
(
F
∣∣
R∗
)

�
(
F
∣∣
Bε∩R∗

)

H 1(R;F ) H 1
(
Bε; F

∣∣
Bε

)⊕ H 1
(
R∗; F

∣∣
R∗
)

H 1
(
Bε ∩R∗; F

∣∣
Bε∩R∗

)
0.

α β

δ

Since H 1(R; F ∣∣
R∗) and H 1(Bε ∩R∗; F ∣∣

Bε∩R∗) vanish the sequence simplifies to:

0 �(F ) �
(
F
∣∣
Bε

)⊕ �
(
F
∣∣
R∗
)

�
(
F
∣∣
Bε∩R∗

)

H 1(R;F ) H 1(Bε; F
∣∣
Bε

) 0.

α β

δ
r∗
1

The map β is surjective, since the restriction from �
(
F
∣∣
R∗
)

to �
(
F
∣∣
Bε∩R∗

)
is surjective. Fol-

lowing the sequence yields Im δ = ker r∗
1 = 0. im r∗

1 = ker 0 = H 1(Bε; F
∣∣
Bε

), so r∗
1 is also 

surjective. This implies that the restriction cohomomorphism r : F � F
∣∣
Bε

induces an isomor-
phism on cohomology and establishes (23). Indeed, for ε′ < ε, the restriction cohomomorphism 
from F

∣∣
Bε

to F
∣∣
Bε′

is an isomorphism, again giving an isomorphism of cohomology. So,

H ∗(R;F )≈ lim−�
ε>0

H ∗(Bε; F
∣∣
Bε

)
.

We can compute the limit using [44, Theorem II.10.6]:

lim−�
ε>0

H ∗(Bε; F
∣∣
Bε

)≈ H ∗({λ0}; F
∣∣{λ0}

)
.

Since F
∣∣{λ0} is flasque (restriction maps are surjective), it is acyclic. This also implies �(F ) ∼=

�
(
F
∣∣{λ0}

)∼= Fλ0 , completing the proof. �
The same results hold for � = I , a bounded, or semi-bounded interval.

Lemma 10.2. Let F be a sheaf of rings on � and let �′ i
↪−��. Assume that F and F |�′ are 

acyclic. If

(i) i0∗ : H 0(�; Aφ∗) �H 0(�′; Aφ∗) is injective, then im i0∗ ∼= H 0(�; F ) and

H 1(�,�′;F ) ∼= H 0(�′;F )

im i0∗
, and Hk(�,�′;F ) ∼= 0, for k �= 1;

(ii) i0∗ : H 0(�; Aφ∗) �H 0(�′; Aφ∗) is surjective, then

H 0(�,�′;F ) ∼= ker i0∗, and Hk(�,�′;F ) ∼= 0, for k �= 0.
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Proof. As before for triple (�′, ∅) 
i

↪−� (�, ∅) 
j

↪−� (�, �′) we have the long exact sequence,

0 H 0(�,�′;F ) H 0(�;F ) H 0(�′;F )

H 1(�,�′;F ) H 1(�;F ) H 1(�′;F ) · · · .

δ0 j0∗ i0∗

δ1
j1∗ i1∗ δ2

Since, by Lemma 10.1, F is acyclic we obtain the truncated sequence

0 H 0(�,�′;F ) H 0(�;F ) H 0(�′;F ) H 1(�,�′;F ) 0.
δ0 j0∗ i0∗ δ1 j1∗ (24)

Since i0∗ is injective and thus ker i0∗ = 0 = im j0∗ . Moreover, ker j0∗ = im δ0 = 0, which implies 
that H 0(�, �′; F ) ∼= 0. Consequently, we have the short exact sequence

0 H 0(�;F ) H 0(�′;F ) H 1(�,�′;F ) 0,
j0∗ i0∗ δ1 j1∗

from which the result for H 1(�, �′F ) follows. The cohomology Hk(�, �′F ) ∼= 0, for k � 2
follows from Lemma 9.12, which completes the proof of (i).

As for (ii) we have the truncated exact sequence in (24). Now i0∗ is surjective which implies 
that ker δ1 = im i0∗ = H 0(�′; F ). Therefore, ker j1∗ = im δ1 = 0 and thus j1∗ is injective. Conse-
quently, H 1(�, �′F ) ∼= 0. We now have the short exact sequence

0 H 0(�,�′;F ) H 0(�;F ) H 0(�′;F ) 0,
δ0 j0∗ i0∗ δ1

which implies that H 0(�, �′; F ) ∼= ker i0∗ . The relative homology for k � 1 follows from 
Lemma 9.12. �
Remark 10.3. The sheaf cohomology groups of the abelian attractor sheaf can be equipped with 
a cup product from the ring structure of the sheaf. We leave cup product computations and their 
interpretation for later work.

10.1.1. The pitchfork bifurcation
Consider a parametrized dynamical system on X = R ∪ {−∞, ∞}, the 2-point compactifica-

tion of R, experiencing a pitchfork bifurcation, cf. Fig. 5. The parametrized flow is defined via 
the differential equation

ẋ = λx − x3, x ∈ R, λ ∈R.

For parameter values λ � λ0, λ0 = 0, there are two repelling fixed points at +∞ and −∞ and 
a single attracting fixed point at x = 0. However, if λ > λ0 there are two attracting fixed points 
x = ±xλ, and x = 0 is instead a repelling fixed point. We fix a parametrization:

ψ∗ : ��DS(T ,X),
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∞

−∞

0
�

X

�′
U

Fig. 5. In the pitchfork bifurcation, the section on �′ ⊂ � defined by σ(λ) = (
λ,φλ,ωφλ(U)

)
fails to extend globally.

where � =R is parameter space, T = R+ is the time space and X is the 2-point compactification 
of R.

Lemma 10.4. The global sections of the abelian attractor sheaf for the normal form pitchfork 
bifurcation are H 0(�; Aψ∗) ∼= �

(
Aψ∗

)∼= Z3
2.

Proof. Since ψ∗ is stable everywhere except λ0, Lemma 10.1 yields that �(Aψ∗) ∼= A
ψ∗
λ0

∼=
RAtt(ψ∗(λ0)). At λ0, we have that Att(ψ∗(λ0)) is a five element lattice: ∅, {0}, [−∞, 0], [0, ∞], X. 
There are three join irreducible elements: {0}, [−∞, 0], and [0, ∞]. Applying j : Att(ψ∗(λ0)) �
RAtt(ψ∗(λ0)) to these yields the three generators of RAtt(ψ∗(λ0)) ∼= Z3

2. �
The above proof shows the global sections of Aψ∗ are characterized by their value at the bi-

furcation point. The join-irreducible elements {0}, [−∞, 0], and [0, ∞] for the stalk at λ0 extend 
uniquely to the following global sections of ψ−1∗ S Att (seen in purple in Fig. 6):

s1 : λ ��
{

(λ,ψ∗(λ), {0}) λ� 0

(λ,ψ∗(λ), [−xλ, xλ]) λ > 0
, s2 : λ ��

{
(λ,ψ∗(λ), [0,∞]) λ� 0

(λ,ψ∗(λ), [−∞, xλ]) λ > 0
,

s3 : λ ��
{

(λ,ψ∗(λ), [−∞,0]) λ� 0

(λ,ψ∗(λ), [−xλ,∞]) λ > 0
.

Embedding these into �(Aψ∗) via l yields the canonical basis B�, as discussed at the end of 
Section 9.

Proposition 10.5. Let �′ := [a, ∞). If a > 0, then Hk(�, �′; Aψ∗) ∼= Z2
2 for k = 1, and 

Hk(�, �′; Aψ∗) = 0 otherwise. When a � 0, all relative cohomology groups vanish.
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Fig. 6. Diagram of sections and restriction map for the pitchfork bifurcation’s attractor lattice sheaf. Join-irreducible 
elements are highlighted in purple. Notice there are sections in ψ−1∗ S Att((a, b)) which do not lie in the image of the 
restriction map.

Proof. Lemma 10.4 gives �
(
Aψ∗

) ∼= Z3
2. For a > 0, �′ contains no bifurcation points, and 

so Aψ∗
∣∣
�′ is constant. By checking the attractor lattice at any stalk, a thirteen element lattice 

with five join-irreducible elements, we may obtain H 0(�′; Aψ∗) ∼= �
(
Aψ∗

∣∣
�′
)∼= A

ψ∗
λ

∼= Z5
2 for 

any λ ∈ �′. Now we consider the restriction map i0∗ : H 0(�; Aψ∗) � H 0(�′; Aψ∗). We will 
write this map as a matrix in the canonical bases. Let {e1, e2, e3} denote the basis B�, where 
ei = l(si). {e′

i}5
i=1, e′

i = l(s′
i ) will denote the basis B�′ , where

s′
1 : λ �� (λ,ψ∗(λ), {−xλ}), s′

2 : λ �� (λ,ψ∗(λ), {xλ}), s′
3 : λ �� (λ,ψ∗(λ), [−∞,−xλ]),

s′
4 : λ �� (λ,ψ∗(λ), [xλ,∞]), s′

5 : λ �� (λ,ψ∗(λ), [−xλ, xλ]).

Now the restriction map may be written as:
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i0∗ : H 0(�;Aψ∗)�H 0(�′;Aψ∗), i0∗ =

⎡⎢⎢⎢⎢⎣
0 1 0
0 0 1
0 1 0
0 0 1
1 1 1

⎤⎥⎥⎥⎥⎦ .

i0∗ is therefore injective, which by Lemma 10.2(i) yields H 1(�, �′; Aψ∗) ∼= Z2
2, and that the 

other relative cohomology groups vanish. For a � 0, the argument of Lemma 10.1 shows that the 
restriction cohomomorphism induces an isomorphism on cohomology, so H 0(�, �′; Aψ∗) =
H 1(�, �′; Aψ∗) = 0. Both Aψ∗ and Aψ∗ |�′ are acyclic, so the higher order relative cohomology 
groups vanish by Lemma 10.2(i). �
Proposition 10.6. Let �′ := (−∞, a]. Then, Hk(�, �′; Aψ∗) ∼= 0 for all k and for all a ∈ R.

Proof. Note that �
(
Aψ∗

) ∼= �
(
Aψ∗

∣∣
�′
) ∼= Z3

2 for all a ∈ R (the same computations as in 
Lemma 10.4 apply to �′). Therefore, H 0(�; Aψ∗) ∼= H 0(�′; Aψ∗) for all a ∈ R and thus by 
Lemma 10.2(i) Hk(�, �′; Aψ∗) ∼= 0 for all k. �
Theorem 10.7. Let φ∗ be a parametrized dynamical system over � conjugate to the above 
canonical parametrization ψ∗ for the pitchfork bifurcation. Then,

Aφ∗ is acyclic and H 0(�;Aφ∗) ∼= Z3
2.

Moreover, there exists a value λ0 ∈R such that

Hk
(
�,�′;Aφ∗)∼=

{
Z2

2 if k = 1 and a > λ0;
0 if k �= 1 or a � λ0,

where �′ = [a, ∞). Furthermore, for �′ := (−∞, a], then Hk
(
�, �′; Aφ∗

) ∼= 0 for all k and 
for all a ∈ R.

Proof. This follows immediately from Theorem 8.7, Lemma 10.1, and Propositions 10.5 and 
10.6. �

This theorem can be applied locally in parameter space. If φ∗ : R � DS(R; I ) is some 
parametrized dynamical system such that φ∗ experiences a pitchfork bifurcation on an open 
set �, then Aφ∗

∣∣
�

has the above cohomology groups. Another important observation is that the 
relative cohomology in the example below is the same for a local pitchfork bifurcation.

Example 10.8. Let φ∗ be a parametrized flow over � = R on the interval X = [−1, 1] with 
a single attracting fixed point at x = 0 for λ � 0. This system is a semi-flow with T = R+. 
For λ � 0 the system undergoes a pitchfork bifurcation with two branches ±xλ of attracting 
fixed points converging to ±1 respectively as λ � +∞, cf. Fig. 5. If we repeat the analysis 
in Propositions 10.5 and 10.6 the sheaf cohomology over � is different: Aφ∗ is acyclic and 
H 0(�; Aφ∗) ∼= Z2. On the other hand the relative sheaf cohomologies Hk

(
R, [a, ∞); Aφ∗

)
and 

Hk
(
R, (−∞, a]; Aφ∗

)
are isomorphic.
174



K.A. Dowling, W.D. Kalies and R.C.A.M. Vandervorst Journal of Differential Equations 367 (2023) 124–198
∞
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Fig. 7. A saddle-node bifurcation. The section on �′ defined by σ(λ) = (
λ,φλ,ωφλ(U)

)
fails to extend globally.

10.1.2. The saddle-node bifurcation
Consider a parametrized dynamical system on X = R ∪ {−∞, ∞}, the 2-point compactifi-

cation of R, experiencing a saddle-node bifurcation. The parametrized flow is defined via the 
differential equation

ẋ = λ − x2, x ∈R, λ ∈R,

and +∞ and −∞ are a repelling and attracting fixed point respectively. For parameter values 
less than λ0 := 0, there is an attracting fixed point at −∞, and a repelling fixed point at +∞. For 
parameter values greater than λ0, there is an additional attracting and repelling fixed point at xλ

and −xλ respectively (Figs. 7, 8). We fix a parametrization:

ψ∗ : ��DS(T ,X),

where � = R is parameter space, T = R is the time space and X is the 2-point compactifi-
cation of R. Lemma 10.1 again shows that the attractor sheaf Aψ∗ has vanishing higher order 
cohomology, but relative cohomology recognizes the bifurcations.

Lemma 10.9. The global sections of the abelian attractor sheaf for the normal form saddle-node 
bifurcation are H 0(�; Aψ∗) ∼= �

(
Aψ∗

)∼= Z3
2.

Proof. We follow a similar proof to 10.4. ψ∗ is stable everywhere except λ0, so �(Aψ∗) ∼=
RAtt(ψ∗(λ0)). At λ0, we have that Att(ψ∗(λ0)) is a four element lattice: ∅, {−∞}, [−∞, 0], X. 
There are three join irreducible elements: {−∞}, [−∞, 0], and X. Applying j : Att(ψ∗(λ0)) �
RAtt(ψ∗(λ0)) to these yields the three generators of RAtt(ψ∗(λ0)) ∼= Z3. �
2
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Fig. 8. Diagram of sections and restriction maps for the saddle-node bifurcation’s attractor lattice sheaf. Join-irreducible 
elements are highlighted in purple. This example shows restriction maps can fail to be injective or surjective.

One can explicitly calculate the join-irreducible elements of �(ψ−1∗ S Att):

s1 : λ �� (λ,ψ∗(λ), {−∞}), s2 : λ ��

{
(λ,ψ∗(λ), {−∞}) λ < λ0

(λ,ψ∗(λ), [−∞, xλ]) λ � λ0
,

s3 : λ �� (λ,ψ∗(λ),X).

As with the pitchfork bifurcation, embedding these into �(Aψ∗) via l yields the canonical 
basis B�, cf. Section 9.

Proposition 10.10. Let �′ = [a, ∞). If a > 0, then Hk(�, �′; Aψ∗) ∼= Z2 for k = 1, and van-
ishes otherwise. When a � 0, then Hk(�, �′; Aψ∗) = 0 for all k.

Proof. Lemma 10.9 demonstratesthe global sections are H 0(�; Aψ∗) ∼= �
(
Aψ∗

)∼= Z3
2. For a >

0, �′ contains no bifurcation points. So we may check at any stalk λ ∈ �′ that

RAtt(ψ∗(λ0)) ∼= H 0(�′;Aψ∗) ∼= �
(
Aψ∗

∣∣∣
�′
)∼= Z4

2.

Now we must consider the restriction map i0∗ . Let {e1, e2, e3} the basis B�, where ei = l(si). 
Define
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s′
1 : λ �� (λ,ψ∗(λ), {−∞}), s′

2 : λ �� (λ,ψ∗(λ), {xλ}),
s′

3 : λ �� (λ,ψ∗(λ), [xλ,∞]), s′
4 : λ �� (λ,ψ∗(λ), [−∞, xλ]).

The canonical basis B�′ is given by {e′
i}4

i=1, where e′
i = l(s′

i ). i
0∗ may be written as a matrix in 

these bases:

i0∗ : H 0(�;Aψ∗)�H 0(�′;Aψ∗), i0∗ =

⎡⎢⎢⎣
1 0 0
0 0 1
0 0 1
0 1 1

⎤⎥⎥⎦
The injectivity of i0∗ and Lemma 10.2(i) yields H 1(�, �′; Aψ∗) ∼= Z2, and the other relative 

cohomology groups vanish. For a � 0, Lemma 10.1 proves H 0(�′; Aψ∗) ∼= �
(
Aψ∗

∣∣
�′
) ∼= Z3

2, 
so H 0(�, �′; Aψ∗) = H 1(�, �′; Aψ∗) = 0 since the restriction is an isomorphism. As before 
the higher order relative cohomology groups vanish by Lemma 10.2(i). �
Proposition 10.11. Let �′ = (−∞, a]. If a � 0, then Hk(�, �′; Aψ∗) ∼= 0 for all k. When a < 0, 
then H 0(�, �′; Aψ∗) ∼= Z2 and vanishes otherwise.

Proof. As before the global sections are H 0(�; Aψ∗) ∼= �
(
Aψ∗

) ∼= Z3
2. For a � 0, we have 

H 0(�′; Aψ∗) ∼= �
(
Aψ∗

∣∣
�′
) ∼= Z3

2 by applying 10.1. The restriction map i0∗ is an isomorphism, 
so all relative cohomology groups vanish. For a < 0, there are no bifurcation points in �′, and so 
we have H 0(�′; Aψ∗) ∼= �

(
Aψ∗

∣∣
�′
)∼= Z2

2 by checking RAtt(ψ∗(λ)) at any stalk in �′. Define

s′
1 : λ �� (λ,ψ∗(λ), {−∞}), s′

2 : λ �� (λ,ψ∗(λ),X).

The canonical basis B�′ is then given by e′
i := l(s′

i ). Thus, in the canonical bases,

i0∗ : H 0(�;Aψ∗)�H 0(�′;Aψ∗), i0∗ =
[

1 1 0
0 0 1

]
Surjectivity of i0∗ and Lemma 10.2(ii) then implythat H 0(�, �′; Aψ∗) ∼= Z2. The higher order 
relative cohomology groups vanish by Lemma 10.2(i) and (ii). �
Theorem 10.12. Let φ∗ be a parametrized dynamical system over � conjugate to the above 
canonical parametrization ψ∗ for the saddle-node bifurcation. Then,

Aφ∗ is acyclic and H 0(�;Aφ∗) ∼= Z3
2.

Moreover, there exists a value λ0 ∈R such that

Hk(�,�′;Aφ∗) ∼=
{
Z2 if k = 1 and a > λ0

0 k �= 1,or a � λ0,
with �′ = [a,∞),

Hk(�,�′;Aφ∗) ∼=
{
Z2 if k = 0 and a < λ0

0 k �= 0,or a � λ0,
with �′ = (−∞, a].
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Proof. Apply Theorem 8.7, Lemma 10.1, and Propositions 10.10 and 10.11. �
Remark 10.13. Fix a < 0. Let us more closely examine the restriction map i0∗ : H 0(�; Aψ∗) �
H 0((−∞, a]; Aψ∗). ker i0∗ , which we showed is isomorphic to H 0

(
R, (−∞, a]; Aψ∗

)
, is gen-

erated by e2 + e3 ∈ H 0(�; Aψ∗). e2 + e3 �= 0, but i0∗(e2) = i0∗(e3) = e′
1. We can compute the 

symmetric Conley form on the sections s2, s3:

ψ−1∗ S CAtt(s3 ∨ s2, s3 ∧ s2) = ψ−1∗ S CAtt(s3, s2) = g ∈ �(ψ−1∗ S Morse),

g : λ ��

{
(λ,ψ∗(λ),∅) λ < λ0

(λ,ψ∗(λ), [−xλ, xλ]) λ � λ0
.

Just as e2 +e3 is nonzero only on [0, ∞), g is nonempty only on [0, ∞). Continuation of a Morse 
set to the empty set via the global section g yields nontrivial relative cohomology. We leave the 
rigorous formulation of this (utilizing a map from �(ψ−1∗ S Morse) to �(Aψ∗) similar in spirit to 
l) for later work.

Example 10.14. Consider a saddle-node bifurcation in the system described in Fig. 7. We im-
pose an attracting fixed point at the bottom of Fig. 7, such that we may restrict phase space 
to a forward-invariant compact interval X = [1, 0]. Call this parametrized dynamical system 
φ∗ : R � DS(R+, X). Lemma 10.1 again shows that Aφ∗ has vanishing higher cohomology. 
However, H 0(�; Aφ∗) ∼= Z2

2 which differs from the above example. The relative cohomology 
groups are the same as in the above example as is the case for the pitchfork bifurcation.

10.1.3. The transcritical bifurcation
Consider a parametrized dynamical system on X = R ∪ {−∞, ∞}, the 2-point compactifi-

cation of R, experiencing a transcritical bifurcation. The parametrized flow is defined via the 
differential equation

ẋ = λx − x2, x ∈R, λ ∈R,

and +∞ and −∞ are a repelling and attracting fixed points respectively. As before we fix a 
parametrization:

ψ∗ : ��DS(T ,X),

where � =R is parameter space, T = R is the time space and X is the 2-point compactification 
of R. Lemma 10.1 again shows that the attractor sheaf Aψ∗ has vanishing higher order coho-
mology. We denote λ0 := 0 the bifurcation point, and yλ < xλ denote the two roots of λx − x2. 
(Figs. 9, 10.)

Lemma 10.15. The global sections of the abelian attractor sheaf for the normal form transcriti-
cal bifurcation are H 0(�; Aψ∗) ∼= �

(
Aψ∗

)∼= Z3
2.

Proof. Similar proof to 10.4 and 10.9. ψ∗ is stable everywhere except λ0, so �(Aψ∗) ∼=
RAtt(ψ∗(λ0)). At λ0, we have that Att(ψ∗(λ0)) is a four element lattice: ∅, {−∞}, [−∞, 0], X. 
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Fig. 9. A trans-critical bifurcation. The section on �′ defined by σ(λ) = (
λ,φλ,ωφλ(U)

)
fails to extend globally.

There are three join irreducible elements: {−∞}, [−∞, 0], and X. Applying j : Att(ψ∗(λ0)) �
RAtt(ψ∗(λ0)) to these yields the three generators of RAtt(ψ∗(λ0)) ∼= Z3

2. �
Computing the join-irreducible elements of �(ψ−1∗ S Att):

s1 : λ �� (λ,ψ∗(λ), {−∞}), s2 : λ �� (λ,ψ∗(λ), [−∞, xλ]),
s3 : λ �� (λ,ψ∗(λ),X).

Embedding these into �(Aψ∗) via l yields the canonical basis B�, cf. Section 9.

Proposition 10.16. Let �′ = [a, ∞). If a > 0, then Hk(�, �′; Aψ∗) ∼= Z2 for k = 1, and van-
ishes otherwise. When a � 0, then Hk(�, �′; Aψ∗) = 0 for all k.

Proof. By 10.15, the global sections are H 0(�; Aψ∗) ∼= �
(
Aψ∗

) ∼= Z3
2. For a > 0, �′ contains 

no bifurcation points. Thus, A
∣∣
�′ is constant on �′. We have

H 0(�′;Aψ∗) ∼= �
(
Aψ∗

∣∣∣
�′
)∼= RAtt(ψ∗(λ)) ∼= Z4

2,

for any λ ∈ �′. Now for i0∗ . Let {e1, e2, e3} be the basis B�, where ei = l(si). We define

s′
1 : λ �� (λ,ψ∗(λ), {−∞}), s′

2 : λ �� (λ,ψ∗(λ), {xλ}),
s′

3 : λ �� (λ,ψ∗(λ), [xλ,∞]), s′
4 : λ �� (λ,ψ∗(λ), [−∞, xλ]).

B�′ is given by {e′ }4 , where e′ = l(s′). i0 may be written as a matrix in these bases:
i i=1 i i ∗
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Fig. 10. Diagram of sections and restriction map for the transcritical bifurcation’s attractor lattice sheaf. Join-irreducible 
elements are highlighted in purple.

i0∗ : H 0(�;Aψ∗)�H 0(�′;Aψ∗), i0∗ =

⎡⎢⎢⎣
1 0 0
0 0 1
0 0 1
0 1 1

⎤⎥⎥⎦ .

The injectivity of i0∗ and Lemma 10.2(i) yields H 1(�, �′; Aψ∗) ∼= Z2. For a � 0, Lemma 10.1
proves we have H 0(�′; Aψ∗) ∼= �

(
Aψ∗

∣∣
�′
) ∼= Z3

2. Since the restriction is an isomorphism, all 
relative cohomology groups vanish. �
Proposition 10.17. Let �′ = (−∞, a]. If a � 0, then Hk(�, �′; Aψ∗) ∼= 0 for all k. When a < 0, 
then H 1(�, �′; Aψ∗) ∼= Z2 and vanishes otherwise.

Proof. The proof proceeds mirror to Proposition 10.16. For a � 0, we have H 0(�′; Aψ∗) ∼=
�
(
Aψ∗

∣∣ ′
) ∼= Z3. The restriction is an isomorphism, yielding that all relative cohomology 
� 2

180



K.A. Dowling, W.D. Kalies and R.C.A.M. Vandervorst Journal of Differential Equations 367 (2023) 124–198
groups vanish. For a < 0, we have H 0(�′; Aψ∗) ∼= �
(
Aψ∗

∣∣
�′
) ∼= Z4

2. Let {e1, e2, e3} be the 
basis B�, where ei = l(si). We define

s′
1 : λ �� (λ,ψ∗(λ), {−∞}), s′

2 : λ �� (λ,ψ∗(λ), {xλ}),
s′

3 : λ �� (λ,ψ∗(λ), [xλ,∞]), s′
4 : λ �� (λ,ψ∗(λ), [−∞, xλ]).

B�′ is given by {e′
i}4

i=1, where e′
i = l(s′

i ). In these bases,

i0∗ : H 0(�;Aψ∗)�H 0(�′;Aψ∗), i0∗ =

⎡⎢⎢⎣
1 0 0
0 0 1
0 0 1
0 1 1

⎤⎥⎥⎦ .

The injectivity of i0∗ and Lemma 10.2(i) then implies that H 1(�, �′; Aψ∗) ∼= Z2. The other 
relative cohomology groups vanish by Lemma 10.2(i) also. �
Theorem 10.18. Let φ∗ be a parametrized dynamical system over � conjugate to the above 
canonical parametrization for the transcritical bifurcation. Then,

Aφ∗ is acyclic and H 0(�;Aφ∗) ∼= Z3
2.

Moreover, there exists a value λ0 ∈R such that

Hk(�,�′;Aφ∗) ∼=
{
Z2 if k = 1 and a > λ0

0 k �= 1,or a � λ0,
with �′ = [a,∞),

Hk(�,�′;Aφ∗) ∼=
{
Z2 if k = 1 and a < λ0

0 k �= 1,or a � λ0,
with �′ = (−∞, a].

Proof. Apply Theorem 8.7, Lemma 10.1 and Propositions 10.10 and 10.11. �
Remark 10.19. Note the subtle difference in the relative sheaf cohomology for the saddle-node 
and transcritical bifurcations. For the latter we only find relative cohomology at k = 1 for differ-
ent choices of �′, as for the saddle-node we have cohomology at k = 0 and k = 1 for various 
choices of �′.

10.2. The S-shaped bifurcation

Now we study the S-shaped bifurcation, as in Fig. 11. Note this bifurcation has two critical 
parameter values. Consider a parametrized dynamical system on X = R ∪{−∞, ∞}, the 2-point 
compactification of R, experiencing an S-shaped bifurcation. The parametrized flow is defined 
via the differential equation

ẋ = λ + x − x3, x ∈ R, λ ∈R,

and +∞ and −∞ are a repelling fixed points. As before we fix a parametrization:
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∞

−∞

0
�

X

�′

U

Fig. 11. An S-shaped bifurcation. The section on �′ defined by σ(λ) = (
λ,φλ,ωφλ(U)

)
fails to extend globally.

ψ∗ : ��DS(T ,X),

where � =R is parameter space, T = R is the time space and X is the 2-point compactification 
of R. Here, there are two bifurcation points at λ1 := −1 and λ2 := +1. We let yλ � xλ denote 
the least and greatest root of λ + x − x3, respectively (potentially coinciding).

Proposition 10.20. Aψ∗ is acyclic, and �(Aψ∗) ∼= Z3
2.

Proof. Pick λ1 < a < b < λ2, such that �1 := (−∞, b] and �2 := [a, ∞) cover R. Consider 
the Mayer-Vietoris exact sequence:

0 �(Aψ∗) �
(
Aψ∗

∣∣∣
�1

)⊕ �
(
Aψ∗

∣∣∣
�2

)
�
(
Aψ∗

∣∣∣[a,b]
)

H 1(�;Aψ∗) H 1(�1; Aψ∗
∣∣∣
�1

)⊕ H 1(�2; Aψ∗
∣∣∣
�2

)
H 1([a, b]; Aψ∗

∣∣∣[a,b]
)

0,

δ0 α0∗ β0∗

δ1

α1∗ β1∗

since H 2(R; Aψ∗) ∼= 0, which uses the fact that intervals have covering dimension 1, cf. [48, 
Lemma 2.7.3 and Proposition 3.2.2]. We can compute the global sections:

�
(
Aψ∗

∣∣∣
�1

)∼= �
(
Aψ∗

∣∣∣
�2

)∼= Z4
2, �

(
Aψ∗

∣∣∣[a,b]
)∼= Z5

2.

The computations for �
(
Aψ∗

∣∣
�1

)
and �

(
Aψ∗

∣∣
�2

)
are identical, both employing 10.1 to achieve 

an isomorphism between the global sections and the stalk at the bifurcation point. As for 
�
(
Aψ∗

∣∣[a,b]
)
, there are no bifurcation points in [a, b], so we may check this at any stalk in 

[a, b]. Now we will write some bases. For �
(
Aψ∗

∣∣
�1

)
, the join irreducible elements are

s′ : λ �� (λ,ψ∗(λ), {yλ}), s′ : λ �� (λ,ψ∗(λ), [yλ, xλ]),
1 2
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s′
3 : λ �� (λ,ψ∗(λ), [−∞, yλ]), s′

4 : λ �� (λ,ψ∗(λ), [yλ,∞]).

The canonical basis B�1 is then {e′
i}4

i=1 where e′
i = l(s′

i ). As for �
(
Aψ∗

∣∣
�2

)
,

s′′
1 : λ �� (λ,ψ∗(λ), {xλ}), s′′

2 : λ �� (λ,ψ∗(λ), [xλ,∞]),
s′′

3 : λ �� (λ,ψ∗(λ), [yλ, xλ]), s′′
4 : λ �� (λ,ψ∗(λ), [−∞, xλ]).

So B�2 is then {e′′
i }4

i=1 where e′′
i = l(s′′

i ). Finally, on �
(
Aψ∗

∣∣[a,b]
)
:

ŝ1 : λ �� (λ,ψ∗(λ), {yλ}), ŝ2 : λ �� (λ,ψ∗(λ), {xλ}), ŝ3 : λ �� (λ,ψ∗(λ), [−∞, yλ]),
ŝ4 : λ �� (λ,ψ∗(λ), [xλ,∞]), ŝ5 : λ �� (λ,ψ∗(λ), [yλ, xλ]).

Hence B�1 = {̂ei}5
i=1 where ̂ei = l(̂si ). The restriction maps ρi : �

(
Aψ∗

∣∣
�i

)
� �

(
Aψ∗

∣∣[a,b]
)

can now be represented:

ρ1 : �
(
Aψ∗

∣∣∣
�i

)
� �

(
Aψ∗

∣∣∣[a,b]
)
, ρ1 =

⎡⎢⎢⎢⎢⎣
1 0 0 0
0 0 0 1
0 0 1 0
0 0 0 1
0 1 0 1

⎤⎥⎥⎥⎥⎦ ,

ρ2 : �
(
Aψ∗

∣∣∣
�i

)
� �

(
Aψ∗

∣∣∣[a,b]
)
, ρ2 =

⎡⎢⎢⎢⎢⎣
0 0 0 1
1 0 0 0
0 0 0 1
0 1 0 0
0 0 1 1

⎤⎥⎥⎥⎥⎦ .

So we may write β0∗ = ρ1 − ρ2 = ρ1 + ρ2:

β0∗ : �
(
Aψ∗

∣∣∣
�1

)⊕ �
(
Aψ∗

∣∣∣
�2

)
� �

(
Aψ∗

∣∣∣[a,b]
)
, β0∗ =

⎡⎢⎢⎢⎢⎣
1 0 0 0 0 0 0 1
0 0 0 1 1 0 0 0
0 0 1 0 0 0 0 1
0 0 0 1 0 1 0 0
0 1 0 1 0 0 1 1

⎤⎥⎥⎥⎥⎦ .

So �(Aψ∗) ∼= im α0∗ ∼= kerβ0∗ ∼= Z3
2. Since �1, �2 both contain only one bifurcation point, we 

can apply Lemma 10.1 to conclude that H 1
(
�1; Aψ∗

∣∣
�1

)
and H 1

(
�2; Aψ∗

∣∣
�2

)
vanish for all 

k � 1. As β0∗ is surjective, this implies H 1(�; Aψ∗) = 0. The remaining sheaf cohomology 
vanishes due to the dimension restriction on �. �

The S-shaped bifurcation is an example where Aψ∗ and Attψ∗ , the attractor sheaf and free 
attractor sheaf respectively, have differing cohomologies.

Proposition 10.21. Attψ∗((−∞, λ2)) ∼= Z7
2, Attψ∗((λ1, ∞)) ∼= Z7

2, and Attψ∗((λ1, λ2)) ∼=
Z13.
2
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Proof. Both (−∞, λ2) and (λ1, ∞) contain precisely one bifurcation point, so we may apply 
Lemma 10.1 to get isomorphisms Attψ∗((−∞, λ2)) ∼= Att

ψ∗
λ1

and Attψ∗((λ1, ∞)) ∼= Att
ψ∗
λ2

. 

Note that Att(ψ∗(λ1)) and Att(ψ∗(λ2)) are both seven element lattices. Thus, Att
ψ∗
λ1

∼= Z7
2 and 

Att
ψ∗
λ2

∼= Z7
2, the free monoid rings generated by these lattices. As for Attψ∗((λ1, λ2)), (λ1, λ2)

contains no bifurcation points, so Attψ∗((λ1, λ2)) ∼= Att
ψ∗
λ for any λ ∈ (λ1, λ2). At any such λ, 

Att(ψ∗(λ)) is a thirteen element lattice. So Attψ∗((λ1, λ2)) ∼= Z13
2 . �

Proposition 10.22. Let Attψ∗ be the free attractor sheaf associated to ψ∗.

Hk(�;Attψ∗) ∼=

⎧⎪⎨⎪⎩
Z5

2 if k = 0

Z4
2 if k = 1

0 if k � 2

Proof. Let �1 = (−∞, λ2) and �2 = (λ1, ∞) be an open covering for � = R. We build the 
ordered Čech complex from this cover:

0 C
0
({�1,�2};Attψ∗) C

1
({�1,�2};Attψ∗) C

2
({�1,�2};Attψ∗) . . .

δ0 δ1 δ2
,

which in our case is:

0 Attψ∗(�1) ⊕Attψ∗(�2) Attψ∗(�1 ∩ �2) 0,
ρ2

1,2−ρ1
1,2

where ρ2
1,2 denotes the restriction map from Attψ∗(�1) to Attψ∗(�1 ∩ �2), and ρ1

1,2 from 
Attψ∗(�2). We can write these as matrices:

ρ2
1,2 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, ρ1

1,2 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0
0 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
where the bases are read from the corresponding generators in Fig. 12, bottom up, left to right. 
There are four generators for Attψ∗(�1 ∩ �2) that do not lie in the image of either restriction 
map. We get cohomology groups from the above chain complex:

Ȟ 0({�1,�2};Attψ∗) = ker δ1 ∼= Z5
2, Ȟ 1({�1,�2};Attψ∗) = ker δ2/Imδ1 ∼= Z4

2,

Ȟ k({�1,�2};Attψ∗) = 0 for k > 1.
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Fig. 12. Diagram of sections and restriction maps for the S-shaped bifurcation’s attractor lattice sheaf. Join-irreducible 
elements are highlighted in purple. Notice that while there are sections in ψ−1∗ S Att((a, b)) which do not lie in the image 
of either restriction map, the join-irreducible elements of ψ−1∗ S Att((a, b)) do. We observe a consequence of this in 
Section 10.3: Aψ∗ is acyclic while Attψ∗ is not.

Since �1 ∩�2 contains no bifurcation points, Attψ∗ is locally constant on �1 ∩�2 and therefore 
acyclic on �1 ∩ �2. We now use Leray’s Theorem to determine the sheaf cohomology of Attψ∗

from the above Čech cohomology groups, which yields the desired result. �
The result of Proposition 10.22 is an example where Theorem 9.11 applies. The sheaf coho-

mology of Attψ∗ picks up bifurcations. For the sheaf cohomology of Aψ∗ Theorem 9.11 does 
not apply.

Proposition 10.23. Let �′ = [a, ∞). If a ∈ (λ1, λ2], then Hk(�, �′; Aψ∗) ∼= Z2 for k = 1, and 
vanishes otherwise. When a /∈ (λ1, λ2], then Hk(�, �′; Aψ∗) = 0 for all k.

Proof. We achieve a truncated long exact sequence from Proposition 10.20 and Proposition 9.3:

0 H 0(�,�′;Aψ∗) H 0(�;Aψ∗) H 0(�′;Aψ∗) H 1(�,�′;Aψ∗) 0.
j0∗ i0∗ δ1

Following the argument of Lemma 10.1, the map i0∗ is injective and thus H 0(�, �′; Aψ∗) ∼= 0. 
Lemma 10.2 then yields:
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H 1(�,�′;Aψ∗) ∼= H 0(�′;Aψ∗)

im i0∗

Note that im i0∗ ∼= H 0(�; Aψ∗) = �
(
Aψ∗

) ∼= Z3
2. For a ∈ (λ1, λ2], we have H 0(�′; Aψ∗) =

�
(
Aψ∗

∣∣
�′
)∼= Z4

2, which implies H 1(�, �′; Aψ∗) ∼= Z2. Otherwise, H 1(�, �′; Aψ∗) = 0. �
Proposition 10.24. Let �′ = (−∞, a]. If a ∈ [λ1, λ2), then Hk(�, �′, Aψ∗) ∼= Z2 for k = 1, 
and is zero otherwise. When a /∈ [λ1, λ2), then Hk(�, �′; Aψ∗) = 0 for all k.

Proof. An identical argument as in the proof of Proposition 10.23. �
Theorem 10.25. Let φ∗ be a parametrized dynamical system conjugate to the above parametriza-
tion ψ∗ of the S-shaped bifurcation. Then,

Aφ∗ is acyclic and H 0(�;Aφ∗) ∼= Z3
2.

Moreover, there exists λ1, λ2 ∈ R such that

Hk(�,�′;Aφ∗) ∼=
{
Z2 if k = 1 and a ∈ (λ1, λ2]
0 otherwise,

with �′ = [a,∞),

Hk(�,�′;Aφ∗) ∼=
{
Z2 if k = 1 and a ∈ [λ1, λ2)

0 otherwise,
with �′ = (−∞, a].

Proof. Apply Theorem 8.7, Proposition 10.20, and Propositions 10.23 and 10.24. �
Remark 10.26. Note that the relative cohomologies Hk(�, �′; Aφ∗) are the same for the trans-
critical and S-shaped bifurcation.

Remark 10.27. If we consider the S-shaped bifurcation on an interval X = I = [−c, c], c � 1, 
with time space T = R+ and parameter space � = [−λ0, λ0], with λ0 = −c + c3 − ε, 0 < ε � 1
we obtain the following sheaf cohomology:

Aφ∗ is acyclic and H 0(�;Aφ∗) ∼= Z2.

Moreover, there exists a value λ0 ∈R such that

Hk(�,�′;Aφ∗) ∼=
{
Z2 if k = 1 and a ∈ (λ1, λ2]
0 otherwise,

with �′ = [a,∞) ∩ �,

Hk(�,�′;Aφ∗) ∼=
{
Z2 if k = 1 and a ∈ [λ1, λ2)

0 otherwise,
with �′ = (−∞, a] ∩ �.

For free attractor sheaf we have:
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Hk(�;Attψ∗) ∼=

⎧⎪⎨⎪⎩
Z2

2 if k = 0

Z2 if k = 1

0 if k � 2

,

which is clearly not acyclic.

10.3. Comparing the attractor and free attractor sheaves

The abelian attractor sheaf, as shown in Theorem 10.25, is acyclic for the S-shaped bifurca-
tion. Proposition 10.22 demonstrates nontrivial trivial cohomology in dimension one for the free 
attractor sheaf. Consider the following section in ψ−1∗ S Att(�1 ∩ �2):

s : λ �� (λ,ψ∗(λ), {yλ, xλ}).

l(s) is not the restriction of any section from Aψ∗(�1) or Aψ∗(�2). Likewise, the correspond-
ing generator for s in Attψ∗((λ1, λ2)) is not the restriction of any section from Attψ∗(�1) or 
Attψ∗(�2). However, in Aψ∗(�1 ∩ �2):

l(s) = ρ1(e
′
1) + ρ2(e

′′
1),

where ρ1, ρ2, e′
1, and e′′

1 are defined in Proposition 10.20. Thus, s lies in the image of ρ1 −ρ2. The 
analogous statement cannot be said for s’s corresponding generator in Attψ∗((λ1, λ2)); it does 
not lie in the image of ρ2

1,2 − ρ1
1,2 as defined in 10.22. So while this generator does contribute 

a nontrivial cohomology class to H 1(�, Attψ∗), l(s) does not. This highlights the difference 
between the purely formal addition operation in Attψ∗(�1 ∩ �2) and the addition operation in 
Aψ∗(�1 ∩ �2) constructed from the lattice structure of ψ−1∗ S Att(�1 ∩ �2).
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Appendix A. Table with important definitions

Notation Description Reference

Dynamics T Time space, either Z,Z+,R, or R+ Sect 2
Invφ(U) Maximal invariant set in U Sect 3, pg 131
ωφ(U) Omega limit set of U Sect 3, pg 131
αφ(U) Alpha limit set of U Rmk 3.6

(continued on next page)
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Notation Description Reference

ANbhd(φ) Lattice of attracting neighborhoods for φ Sect 3, pg 131
Att(φ) Lattice of attractors for φ Sect 3, pg 131
Rep(φ) Lattice of repellers for φ Rmk 3.6
Morse(φ) Meet semilattice of Morse sets for φ Sect 3, pg 131
MRepr(φ) Lattice of Morse representations for φ Sect 5, pg 143
CAtt(A,A′) Conley form of two attractors Sect 6, pg 145

Category 
Theory

DS(T ,X) Category of dynamical systems Sect 2, pg 129
ob(C),hom(C) Objects and morphisms of a category C [29]
hom(φ,ψ) Morphisms between two objects [29]
F : D�C Universe functor Sect 4.1, pg 133
F0 ∈ C Value of universe functor Sect 4.1, pg 133
�[E] Category of elements for a functor E [29,30]
[E;U ] Objects φ for which U ∈ E(φ) Sect 4.1, pg 134
�[w;U ] Partial section functor on [E;U ] Sect 4.1, pg 135
(G,E,w) Continuation frame Definition 4.2

Order 
Theory

BDLat Category of bounded, distributive lattices [6] Sect 2
MLat Category of bounded, meet-semilattices Rmk 5.3
subF : Lat� Lat Lattice of finite sublattices functor Sect 5.2, pg 141
�−
U Unique immediate predecessor of U [6]
O : Poset� BDLat Down-set functor [6]
J : Lat� Poset Poset of join-irreducibles of U [6]
B : BDLat� Bool Booleanization functor [6]
R : BDLat�Ring (Boolean) lattice ring of L Sect 6.3, pg 147
Z2 : BDLat�Ring Lattice algebra of L Sect 6.3, pg 148

Sheaf 
Theory

S G : O(D)� Set Sheaf of sections for �[G] Sect 7.2
�(S G) Set of global sections for S G Sect 7.2
Fφ Stalk of a sheaf F at φ Rmk 7.9, [44]
S Att Attractor lattice sheaf Sect 7.3, pg 153
Aφ∗ Attractor sheaf for φ∗ Sect 8, pg 159
Attφ∗ Free attractor sheaf for φ∗ Sect 8, pg 159
H∗(�;F ) Sheaf cohomology of a sheaf F on � [44]
H∗(�,�′;F ) Relative sheaf cohomology [44]

Appendix B. Functorial properties of attractors

Proof of Lemma 3.2. For t � 0, we have φt(h
−1(U)) ⊂ (h−1 ◦ h ◦ φt )(h

−1(U)). Since h is a 
quasiconjugacy, we have (h−1 ◦ h ◦ φt )(h

−1(U)) = h−1(ψ
†
t ((h ◦ h−1)(U))) ⊂ h−1(ψ

†
t (U)) and 

thus

φt (h
−1(U)) ⊂ h−1(ψ

†
t (U)), ∀t � 0.

The inequality for ω now follows from elementary properties of inverse images and closures:

ωφ(h−1(U)) =
⋂
t�0

cl
⋃
s�t

φs

(
h−1(U)

)⊂
⋂
t�0

cl
⋃
s�t

h−1(ψ†
s (U)

)=
⋂
t�0

clh−1
(⋃

s�t

ψ†
s (U)

)

⊂
⋂

h−1
(

cl
⋃

ψ†
s (U)

)
= h−1

(⋂
cl
⋃

ψ†
s (U)

)

t�0 s�t t�0 s�t
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= h−1
(⋂

t�0

cl
⋃
x∈U

⋃
σ�τ(t,x)

ψσ (x)

)
= h−1

(⋂
τ�0

cl
⋃
σ�τ

ψσ (U)

)
= h−1(ωψ(U)),

which uses the invertibility of the parametrization function τ . Finally applying ωφ we obtain

ωφ(h−1(U)) = ωφ(ωφ(h−1(U))) ⊂ ωφ(h−1(ωψ(U))) ⊂ ωφ(h−1(U))

so that

ωφ(h−1(U)) = ωφ(h−1(ωψ(U))), (B.1)

which completes the proof. �
Proof of Remark 3.6. To deal with negative times we define τ(−t, x) := τ(t, x) in which case

ψ
†
−t = ψ

(
τ(−t, ·), ·)= ψ

(−τ(t, ·), ·)= (
ψ

†
t

)−1
.

Let x ∈ φ−t (h
−1(U)) so that φt (x) ∈ h−1(U). Then, by the quasiconjugacy condition h(φt(x)) =

ψ
†
t (h(x)) ∈ U , and therefore h(x) ∈ ψ

†
−t (U). This yields x ∈ h−1(ψ

†
−t (U)). Summarizing we 

have

φ−t (h
−1(U)) ⊂ h−1(ψ

†
−t (U)), ∀t � 0.

The remainder of the proof is similar to the proof of Lemma 3.2. �
Proof of Proposition 3.4. Since A is an attractor for ψ , there exists an attracting neighborhood 
U such that ωψ(U) = A. By Eqn. (B.1) we have

ωφ

(
h−1(U)

)= ωφ

(
h−1(ωψ(U))

)= ωφ

(
h−1(A)

)
,

which proves that ωφ

(
h−1(A)

)
is an attractor for φ, since we already know h−1(U) is an attract-

ing neighborhood for φ.
Therefore, for a quasiconjugacy τ × h ∈ hom(φ, ψ), the map ωφ ◦ h−1 : Att(ψ) � Att(φ) is 

well defined. It remains to show that the latter is a lattice homomorphism. Preservation of joins 
is clear, cf. Property (v) for omega-limit sets. Let A, A′ ∈ Att(ψ), then

ωφ(h−1(A ∧ A′))) = ωφ(h−1(ωψ(A ∩ A′))) ⊂ ωφ(h−1(A ∩ A′)) = ωφ

(
h−1(A) ∩ h−1(A′)

)
= ωφ

(
ωφ

(
h−1(A) ∩ h−1(A′)

))⊂ ωφ

(
ωφ(h−1(A)) ∩ ωφ(h−1(A′))

)
= ωφ(h−1(A)) ∧ ωφ(h−1(A′))

Idempotency of ωφ and Equation (3) imply
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ωφ(h−1(A)) ∧ ωφ(h−1(A′)) = ωφ

(
ωφ(h−1(A)) ∩ ωφ(h−1(A′))

)
⊂ ωφ

(
h−1(ωψ(A)) ∩ h−1(ωψ(A′))

)= ωφ

(
h−1(ωψ(A) ∩ ωψ(A′))

)
= ωφ(h−1(A) ∩ h−1(A′)) = ωφ(h−1(A ∩ A′))

= ωφ

(
ωφ(h−1(A ∩ A′))

)⊂ ωφ(h−1(ωψ(A ∩ A′)))

= ωφ(h−1(A ∧ A′))),

which proves that

ωφ

(
h−1(A ∧ A′))

)= ωφ(h−1(A)) ∧ ωφ(h−1(A′)),

and thus ωφ ◦ h−1 : Att(ψ) � Att(φ) is a lattice homomorphism. �
Proof of Remark 3.5. If τ × h ∈ hom(φ, ψ) is a conjugacy, then

h
(
φt (x)

)= ψ
†
t

(
h(x)

)
. (B.2)

Define y = h(x) and s = τ
(
t, h−1(y)

)
. Since h is a homeomorphism, we obtain τ−1(s, y), and 

therefore

φ†
s

(
h−1(y)

)= h−1(ψs(y)
)
, (B.3)

where φ†
s = ψ

(
τ−1(s, ·), ·). This proves that τ−1 × h−1 ∈ hom(ψ, φ) is a conjugacy.

Let A ∈ Att(ψ), then by Proposition 3.4, we have ωφ

(
h−1(A)

) ∈ Att(φ). By Equation (B.3)

we have φ
†
s

(
h−1(A)

) = h−1
(
ψs(A)

) = h−1(A) for all s � 0, which proves invariance of 
h−1(A). Furthermore, since h is a homeomorphism, it follows that h−1(A) is closed, and thus 
ωφ

(
h−1(A)

) = h−1(A), which proves that h−1(A) ∈ Att(φ). Similarly, h(A) ∈ Att(ψ) for all 
A ∈ Att(φ). �
Appendix C. Repellers

In Remarks 3.6 and 5.5 we indicated that one can also the construct continuation frames 
(Rep, RNbhd, α) based repelling neighborhoods and repellers which yields the étalé space 
�[Rep]. For a dynamical system φ : T+ × X� X we define φ−t := φ−1

t as the inverse im-
age. The map φ(−t, x) also satisfies the semigroup property. This allows us to define the notion 
alpha-limit set as

αφ(U) :=
⋂
t�0

cl
⋃
s�t

φ−s(U).

Some properties of αφ(U) are: (i) αφ(U) is compact, closed, (ii) αφ(U) is a forward-backward 
invariant set for the dynamics, (iii) αφ

(
αφ(U)

) ⊃ αφ(U), (iv) αφ(U ∪ V ) = αφ(U) ∪ αφ(V ). A 
neighborhood U ⊂ X is called a repelling neighborhood if αφ(U) ⊂ intU . Repelling neighbor-
hoods form a bounded, distributive lattice denoted by RNbhd(φ). The binary operations are ∩
and ∪. A subset A ⊂ X is called a repeller if there exists an repelling neighborhood U ⊂ X such 
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that R = αφ(U), which is a neighborhood of R by definition. Repellers are compact, closed, 
forward-backward invariant sets and compose a bounded, distributive lattice Rep(φ) with binary 
operations ∪ and ∩. As before φ �� RNbhd(φ) and φ �� Rep(φ) define the contravariant func-
tors RNbhd and Rep from DS(T , X) � BDLat. The functor RNbhd : DS(T , X) � BDLat is 
a stable structure and (Rep, RNbhd, α) forms a continuation frame in a similar way. From the 
continuation frame (Rep, RNbhd, α) we obtain the étalé space (�[Rep], π).

For a dynamical system φ consider the duality isomorphism A �� A∗, A ∈ Att(φ). Since for 
U ∈ ANbhd(φ) the maps U �� Uc and ωφ(U) �� αφ(Uc) define lattice isomorphisms we also 
have the natural transformations c : ANbhd ⇐⇒ RNbhd and ∗ : Att ⇐⇒ Rep. This yields the 
following commutative diagram:

ANbhd(ψ) RNbhd(ψ)

ANbhd(φ) RNbhd(φ)

Att(ψ) Rep(ψ)

Att(φ) Rep(φ)

c

h−1

ωψ αψ

h−1

c

ωφ αφ∗ψ

Att(h) Rep(h)

∗φ

where Att(h) = ωφ ◦ h−1 and Rep(f ) := ∗φ ◦ ωφ ◦ h−1 ◦ ∗ψ . This asymmetry between attractors 
and repellers is typical for noninvertible systems. For invertible systems the symmetry is restored 
so that Rep(h) = αφ ◦ h−1.

Appendix D. Function spaces and the compact-open topology

We recall some basic facts about topologies on function spaces of continuous functions. Let 
X and Y be arbitrary topological spaces and let C(X, Y) the denote the set of all continuous 
maps f : X� Y . A topology on C(X, Y) which is of particular importance is the compact-open 
topology which is defined a subbasis of sets of the form

O(K,U) := {
f | f (K) ⊂ U for K compact in X and U open in Y

}
,

where K ranges over all compact subsets in X and U ranges over all open subsets in Y , cf. 
[51]. If X is a locally compact, Hausdorff space then the compact-open topology is the weakest 
topology such that the map (f, x) �� f (x), f ∈ C(X, Y), is continuous, cf. [52, Cor. 1.2.4]. If X
is compact and Y is a metric space with metric d , then the compact-open topology corresponds 
with the metric topology on C(X, Y) given by the metric:

d(f,g) = sup
x∈X

d(f (x), g(x)), f, g ∈ C(X,Y ),

cf. [53,54].
Let � be an arbitrary topological space. For a continuous map h : � × X� Y we define the 

transpose of h by:
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h∗ : �� C(X,Y ), λ �� h∗(λ) = hλ := h(λ, ·).
Following the terminology in [55] we say that a topology on C(X, Y) is weak if continuity of h
implies continuity of the transpose h∗, and a topology is strong if continuity of the transpose h∗
implies continuity of h. For arbitrary topological spaces X, Y and � the compact-open topology 
is a weak topology on C(X, Y), i.e. h continuous implies that h∗ is continuous, cf. [51, Lemma 
1], [53]. If X is regular and locally compact (in particular for locally compact, Hausdorff spaces), 
then the compact-open topology is both weak and strong, i.e. h is continuous if and only if h∗ is 
continuous, cf. [51, Theorem 1], [53]. This implies that for regular and locally compact spaces 
X the compact-open topology on C(X, Y) is both weak and strong, which is also referred to as 
an exponential topology, cf. [55]. The latter is unique. Finally, the map h �� h∗ is an embedding 
when both � and X are Hausdorff spaces. The map is a homeomorphism when � is Hausdorff 
and X is locally compact, Hausdorff, cf. [53].

For a compact metric space (X, d) define 
(
H(X), dH

)
to be the metric space of compact subsets 

of X equipped with the Hausdorff metric dH. Every continuous function f : X� Y induces a 
continuous function f H : H(X) � H(Y ), which sends compact subsets to their image under the 
function f . Recall the Hausdorff metric:

dH(K,K ′) := max

{
sup
x∈K

inf
x′∈K ′ d(x, x′), sup

x′∈K ′
inf
x∈K

d(x, x′)
}
, K,K ′ ∈ H(X).

Lemma D.1. Let X, Y be compact metric spaces, � a topological space, and h : � × X� Y

continuous map. Then, the function

hH : � × H(X)� H(Y ) (λ,K) �� hH({λ} × K
)

is continuous.

Proof. We will first prove the assignment

D : C(X,Y )� C(H(X),H(Y )) f �� D(f ) := f H,

is continuous. Let f, g ∈ C(X, Y). Then, dC(f, g) = sup
x∈X

d(f (x), g(x)) and

dCH(f H, gH) = sup
K∈H(X)

dH
(
f (K),g(K)

)
.

Since d(y, y′) � sup
x∈X

d(f (x), g(x)) = d(f, g) for any choice of y ∈ f (K), y′ ∈ g(K) it follows 

that dCH(f H, gH) � dC(f, g). Moreover, since points are compact subsets, the reversed inequality 
holds as well:

dC(f,g) = sup
x∈X

dH
(
f ({x}), g({x}))� dCH(f H, gH),

which proves that D is an isometry implying its continuity. The metric topology on C(H(X), H(Y ))

coincides with the compact-open topology and therefore hH is continuous if and only if its trans-
pose hh∗, given by
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hH∗ : �� C
(
H(X),H(Y )

)
, λ �� hH∗ (λ) = hλ

H := hH
({λ}, ·),

is continuous, [51,55]. Note that hH∗ = D ◦ h∗ which proves that hH∗ is continuous, which com-
pletes the proof. �
Remark D.2. In this paper we abuse notation by writing h(K), K ∈ H(X) denoting hH(K) in 
accordance with the analogous notation for h(U) = {y = h(x) | x ∈ U}, U ⊂ X.

Appendix E. Sheaf cohomology

Let us recall the most important principles of sheaf cohomology. Let F : O(D) � Ab be a 
sheaf of abelian groups over a topological space D, where O(D) is the posetal category of open 
sets in D. Here we review the construction of the Godement resolution for computing sheaf 
cohomology. A more detailed description can be found in [44]. Consider the following presheaf 
on D:

C 0(D;F ) : O(D)�Ab, � ��
∏
φ∈�

Fφ,

where Fφ is the stalk of F at φ with the restriction maps being the canonical projec-
tions. It holds that C 0(D; F ) is again a sheaf. There is a corresponding injection of sheaves 
ε0 : F � C 0(D; F ), which sends sections on an open set � ⊂ D to the product of their germs 
in 

∏
φ∈� Fφ . We let K 1(D; F ) be the cokernel sheaf of this mapping, accompanied by the 

quotient map ∂0 : C 0(D; F ) �K 1(D; F ). This gives us an exact sequence

0 F C 0(D;F ) K 1(D;F ) 0.
ε0 ∂0

Define inductively

C n(D;F ) = C 0(D;K n(D;F )),

K n+1(D;F ) = K 1(D;K n(D;F )).

Then, by letting dn = εn+1 ◦ ∂n, we obtain a long exact sequence:

0 F C 0(D;F ) C 1(D;F ) C 2(D;F ) ...
ε0 d0 d1 d2

which is called the Godement resolution for F . The functor Γ : ShAb(D) � Ab which assigns 
to F the group of global sections F (D) on D is left-exact and yields the cochain complex

0 �
(
F
)

�
(
C 0(D;F )

)
�
(
C 1(D;F )

)
�
(
C 2(D;F )

)
...

ε0 d0 d1 d2

which we denote by 
(
Ck(D; F ), dk

)
, where Ck(D; F ) := �

(
C k(D; F )

)
. The cohomology 

groups of the above cochain complex comprise the sheaf cohomology
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Hk(D;F ) := Hk
(
C∗(D;F ), d∗).

For any subset � ⊂ D we define Hk(�; F ) := Hk
(
�; F |�

)
. In [44, Sect. I.6] ‘family of sup-

ports’ are used. Here we choose the family of supports to be all closed subsets of D. The support
of a global section σ ∈ F (D) is defined as |σ | = {

φ ∈ D | σ(φ) �= 0
}
, where σ(φ) is defined as 

the image of σ in the stalk Fφ . Observe that σ(φ) = 0 implies σ
∣∣
�

= 0 in some term F (�) of 
the colimit Fφ = lim−���φ

F (�). This demonstrates that the set upon which a section σ is zero 
is open. Its support is hence a closed subset and an element of the family of supports.

Let � ⊂ D be a closed subset. Following [46, Exer. III.2.3] we define the functor Γ�:
ShAb(D) �Ab which assigns to F the group of sections σ with support in �. Using the above 
resolution for F we obtain the sheaf cohomology with support in � which is denoted by

Hk
�(D;F ) := Hk

(
��

(
C ∗(D;F )

)
, d∗

�

)
.

The latter is also referred to as local sheaf cohomology. For local sheaf cohomology we have the 
following long exact sequence

0−�H 0
�(D;F )−�H 0(D;F )−�H 0(D ��;F )−�H 1

�(D;F )−� · · ·

In [44, Sect. II.12] yet another variation on sheaf cohomology is defined by considering relative 
sections in a sheaf. For a subset � ⊂ D the embedding i : � ↪� D implies the homomorphisms 
of sheaves ik : C k(D; F ) � iC k(�; F |�). Define C k(D, �; F ) := ker ik which implies the 
following resolution

0 F C 0(D,�;F ) C 1(D,�;F ) C 2(D,�;F ) ...
ε0 d0 d1 d2

The latter induces relative sheaf cohomology

Hk(D,�;F ) := Hk
(
�
(
C ∗(D,�;F )

)
, d∗

D,�

)
.

As before we have the following long exact sequence

0−�H 0(D,�;F )−�H 0(D;F )−�H 0(�;F )−�H 1(D,�;F )−� · · ·

cf. [44, Sect. II.12]. There is a relation between local and relative sheaf cohomology. For a closed 
subset � ⊂ D we have

Hk
�(D;F ) ∼= Hk(D,D ��;F ).

A number of properties of relative sheaf cohomology can be summarized as follows:

(i) For a triple �′′ ⊂ �′ ⊂ � we have the long exact sequence

0−�H 0(�,�′;F )−�H 0(�,�′′;F )−�H 0(�′,�′′;F )−�H 1(�,�′;F )−� · · ·
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(ii) For any cl�′ ⊂ int� we have

Hk(D,�;F ) ∼= Hk(D ��′,���′;F );

(iii) For an exact sequence of sheaves 0 �F ′ �F �F ′′ � 0 we have the long exact se-
quence

0−�H 0(D,�;F ′)−�H 0(D,�;F )−�H 0(D,�;F ′′)−�H 1(D,�;F )−� · · ·

Sheaf cohomology may be hard to compute in concrete situations. The Čech cohomology 
construction provides a good approach to sheaf cohomology and is isomorphic to sheaf coho-
mology when D is a paracompact, Hausdorff topological space. For the Čech construction we 
use coverings of D.

Let W = {�i}i∈I be a open covering for D and denote intersections of elements in W by 
�i0...in =⋂n

k=0 �ik . The notation �i0...îm...in
:= �i0...im−1im+1...in omits �im from the intersection. 

Note that �i0...in ⊂ �i0...îm...in
and

ρm
i0...in

:= F (ι) : F (�i0...îm...in
)�F (�i0...in )

is the associated restriction map. Define the Čech cochain groups

Ck(W;F ) :=
∏

(i0...ik)∈I k+1

F (�i0...ik ),

and associated Čech coboundary operators

δk
F : Ck(W;F )� Ck+1(W;F ),

given by

δk
F (σ )i0...ik+1 =

k+1∑
j=0

(−1)jρ
j
i0...ik

(σi0,...îj ...ik+1
).

This defines the Čech cohomology of W is defined as Hk(W; F ) := Hk
(
C∗(W; F ), δ∗

F

)
. If 

one has a total ordering on I , one can define the ordered Čech complex

C
k
(W;F ) :=

∏
i0<...<ik

F (�i0...ik ),

with the same coboundary operator. The cohomology of this complex is isomorphic to that of the 
standard Čech cohomology. The usual construction of Čech cohomology then yields Čech sheaf 
cohomology of D as

Ȟ k(D;F ) := lim−�Hk(W;F ).

W
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There exists a natural homomorphism Hk(D; F ) � Ȟ k(D; F ), which is an isomorphism for 
k � 1 and for all k is D is a paracompact, Hausdorff topological space. For sufficiently nice 
covers of D, Leray’s Theorem yields immediate convergence of the limit.

Theorem D.3 (cf. [44], Thm. III.4.13). Let F be a sheaf on a and W an open covering of D such 
that F

∣∣
�sn

is acyclic for all sn ∈ N(W), the nerve of W. Then there is a canonical isomorphism

H ∗(D;F ) ∼= Ȟ ∗(W;F ).

The Čech construction can also be used to define relative Čech sheaf cohomology, cf. [56,57]. 
For an open subset � ⊂ D. A covering W for D induces a covering W′ = {�i}i∈I ′ for � from 
sets �i ∩ � �= ∅, i ∈ I ′. The pair (W, W′) is a covering of (D, �). The relative chain groups are 
defined as

Ck(W,W′;F ) :=
{
σ ∈ Ck(W;F ) | σi0···ik = 0 if i0, · · · , ik ∈ I ′}.

Via restriction we obtain the coboundary operator δk
F : Ck(W, W′; F ) � Ck+1(W, W′, F )

and the associated relative Čech sheaf cohomologies Hk(W, W′; F ) and Ȟ k(D, �; F ).
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