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Abstract

To capture the global structure of a dynamical system we reformulate dynam-
ics in terms of appropriately constructed topologies, which we call flow topologies;
we call this process topologization. This yields a description of a semi-flow in terms
of a bi-topological space, with the first topology corresponding to the (phase) space
and the second to the flow topology. A study of topology is facilitated through
discretization, i.e. defining and examining appropriate finite sub-structures. Topol-
ogizing the dynamics provides an elegant solution to their discretization by dis-
cretizing the associated flow topologies. We introduce Morse pre-orders, an instance
of a more general bi-topological discretization, which synthesize the space and
flow topologies, and encode the directionality of dynamics. We describe how
Morse pre-orders can be augmented with appropriate (co)homological informa-
tion in order to describe invariance of the dynamics; this ensemble provides an
algebraization of the semi-flow. An illustration of the main ingredients is provided
by an application to the theory of discrete parabolic flows. Algebraization yields a
new invariant for positive braids in terms of a bi-graded differential module which
contains Morse theoretic information of parabolic flows.

Received by the editor March 8, 2024.
2020 Mathematics Subject Classification. 06-04, 06-08, 06D05, 06E05, 37B35, 37M22, 37C70.
Key words and phrases. Closure algebra discretization, closure/derivative operator, bi-topological

space, flow topology and Morse pre-order, Conley index, connection matrix, parabolic recurrence rela-
tion, parabolic homology.

This work was supported in part by NWO GROW grant 040.15.044/3192 and by EPSRC grant
EP/R018472/1.

v





CHAPTER 1

Prelude

We introduce the point of view that dynamics can be studied as a topology.
Thus an analysis of a dynamical system results in an analysis of two topologies
(i.e. a bi-toplogical space): the first topology corresponds to the (phase) space,
and the second to the dynamics. Topology and associated algebraic invariants
have long played a prolific role in the theory of dynamical systems [12, 53, 56, 61].
Loosely stated, a dynamical system engenders topological data, both local (e.g.
fixed points) and global (e.g. attractors) and the directionality of the dynamics or-
ganizes the data. The topological data have associated algebraic invariants which
may further codify the relationship between local and global and often recover
the invariance of the dynamics, i.e. provide information about the existence and
structure of the invariant sets.

1.1. Topologization and discretization

The novelty of our approach – and the first theme of this text – is to formalize
the dynamical system itself as a topology, and capture both topology and dynam-
ics in the formalism of bi-topological spaces, i.e. a topologization of the dynamical
system. Recall that a semi-flow on a topological space pX,T q

1 is a continuous map
φ : R` ˆX Ñ X such that

(i) φp0, xq “ x for all x P X , and
(ii) φpt, φps, xqq “ φpt` s, xq for all s, t P R` and x P X .

For a semi-flow φ the backward image is denoted by φp´t, xq, t ą 0 and is defined
as φp´t, xq :“ tx1 P X | φpt, xq “ x1u. One way to regard a topological space is
via a closure operator on the algebra of subsets of X , cf. Sect. 2.1. Using this point
of view, a map φ as defined above yields a natural closure operator on X through
backward or forward images. If we disregard the continuity of φ in pX,T q this de-
fines Alexandrov topologies onX which are denoted by T ´ and T ` respectively,
cf. Sect. 3.1. The topologies T ´ and T ` record directionality of the flow, but dis-
card the sense of time and invariance. They are also independent of the continuity
properties of φ. We therefore define a topology which allows one to incorporate
the continuity of φ in pX,T q and which is more suited for capturing the important
characteristics of dynamics such as invariance. We will refer to this topology as the

1A topology on X is denoted by T .

1
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(derived) block-flow topology denoted by T ´
‚ , cf. Sect. 3.1.2.2 The topologies T and

T ´
‚ comprise the bi-topological space pX,T ,T ´

‚ q which becomes our model for
a semi-flow φ.3 Sets that are closed in pX,T q and open pX,T ´

‚ q, so called pairwise
clopen sets, are closed attracting blocks for φ, cf. Thm. 3.8. Of course the block-flow
topology T ´

‚ discards some information aboutφ. However, we can define suitable
(co)homology theories on pX,T ,T ´

‚ q which allow one to describe fundamental
invariant structures of the dynamics, cf. Sect. 4.

The second theme of this paper concerns discretization of both topology and
dynamics. The last few decades have seen ever more sophisticated uses of discrete
approximation in order to explore global dynamical features [3, 10, 13, 39, 40, 41,
52]; these techniques are largely based on Conley theory, a topological generaliza-
tion of Morse theory [12]. As before, we describe topology in terms of a closure
algebra, which provides a powerful formalism for discretization and extends these
techniques. Moreover, as we encode a semi-flow φ as a topology, topological dis-
cretization also provides a means of discretizing φ. If we describe a topological
space via a closure algebra

`

SetpXq, cl
˘

, then discretization may be regarded as
determining a finite sub-algebra in the category of closure algebras, cf. Sect. 2.1.
A finite closure algebra may be represented by

`

SetpXq, cl
˘

, where X is a finite set,
and is equivalently described by a finite pre-order pX,ďq, called the specialization
pre-order of the associated Alexandrov topology on X. Duality of the latter pre-
order defines a continuous map

disc : X ↠ X,

which is called the discretization map and provides a discretization of pX,T q by a
finite topological space pX,ďq, cf. Eqn. (2.12). The elements of X are denoted by

FIGURE 1.1. A discretization of pX,T q with the associated face partial
order ď [left 1 and 2]. Example of a semi-flow φ on X and pre-order ď

´
‚

which is a discretization of the block-flow topology T ´
‚ [right 3 and 4].

ξ and are called cells in X. The closure algebra for a bi-topological space such as
pX,T ,T ´

‚ q is given by
`

SetpXq, cl, cl´‚
˘

and by considering finite sub-structures

2As we have cast dynamics as topology, it is worthwhile to ask the question: what can dynamical
systems theory say about topology? Section 4.2 may be regarded as steps in this direction.

3The topologies T and T ´
‚ are in general related while the topologies T and T ´,T ` are in-

dependently defined. The block-flow topology is not Alexandrov in general. An explanation of the
notation of the various flow topologies we use is given in Sect.’s 3.1.2 and 6.1.1.
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we obtain discretization maps disc : X Ñ X that are continuous with respect to
two finite topologies pX,ďq and pX,ď´‚ q. That is, for the bi-topological space
pX,T ,T ´

‚ q a discretization is a finite bi-topological space pX,ď,ď´‚ q with con-
tinuous discretization map disc : pX,T ,T ´

‚ q ↠ pX,ď,ď´‚ q; this procedure is de-
scribed for general bi-topological spaces in Sect. 2.5. Fig. 1.1 illustrates discretiza-
tion of pX,T ,T ´

‚ q via two compatible pre-orders on a finite topological space X.
Attracting blocks, cf. Eqn. (3.3), play a central role in the study of the gradient-

like and recurrent dynamics of a semi-flow φ. As earlier noted, the pairwise clopen
sets in pX,T ,T ´

‚ q comprise the closed attracting blocks for φ. We can describe
such sets in terms of a discretization which synthesizes both topologies. A Morse
pre-order, cf. Defn. 3.18, is a pre-order pX,ď:q such that both discretization maps
disc : pX,T q ↠ pX,ď:q and disc : pX,T ´

‚ q ↠ pX,ě:q are continuous; Morse pre-
orders are particular instances of antagonistic pre-orders, which are defined purely
in terms of bi-topological spaces, cf. Defn. 2.18. Closed sets in pX,ď:q correspond
to closed attracting blocks for φ, cf. Fig. 1.2[right].

The lattice OpX,ď:q of closed sets in pX,ď:q can be represented by the down-
sets of a finite poset pSC,ďq, cf. Eqn. (2.18), Fig. 1.2[left]. The map dyn: pX,ď:q ↠

pSC,ďq is defined as the dual of OpX,ď:q – OpSC,ďq ↣ SetpXq, cf. Eqn.’s (2.15)-
(2.17).4 Depending on the topology onX the map dyn is order-preserving, or order-
reversing5 as is displayed in the following diagram:

(1.1)

pX,ďq

pX,T ,T ´
‚ q pX,ď:q pSC,ďq

pX,ď´‚ q

id
dyn

disc

disc

disc

disc

dyn

id
dyn

The composition X disc
ÝÝÑ X dyn

ÝÝÑ SC yields the T0-discretization tile : X Ñ SC,
cf. App. C.1; in particular, tile : pX,T q Ñ pSC,ďq and tile : pX,T ´

‚ q Ñ pSC,ěq are
continuous. The discretization tile defines a Morse tessellation with locally closed
tiles T “ tile´1S, S P SC, i.e. the sets T form a tessellation of X such that

§

đT is
closed and φpt, xq P int

§

đT for every x P T and for all tiles T , cf. Defn. 3.21 and
[44, Defn. 8]. Fig. 1.2[right] illustrates how a Morse tessellation is obtained from
a Morse pre-order. Conversely, if pT,ďq is a Morse tessellation we obtain a Morse
pre-order by defining pT,ďq to be a Morse pre-order, and thus a discretization
of pX,T ,T ´

‚ q, cf. Sect. 3.3.1. For Boolean discretizations, i.e. discretizations for

4This map is christened dyn as it may be regarded as a grading by the dynamics. Combining
(2.16) and (2.18) provides a formula for dyn, q.v. Thm. 3.29 and Eqn. (3.19).

5The dashed arrows in Figure 1.1 indicated order-reversing maps. We use this notation through-
out the paper.
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T0

T2

T1

T3

FIGURE 1.2. The antagonistic coarsening of ď and ď
´
‚ in Fig. 1.1 makes

a Morse pre-order ď
: [left], with SC depicted as the outlined sets. The

realization yields a Morse tessellation pT,ďq [right].

which the closure operators for pX,T q and pX,ďq commute,6 cf. Defn. 2.9, we can
exploit the fact that sets in OpX,ď:q correspond to regular closed sets, cf. Thm.
3.23. In this case we can define a pre-order ďJ on the top cells7 ξJ P XJ such
that OpXJ,ďJq – OpX,ď:q. Such a pre-order pXJ,ďJq is called a condensed Morse
pre-order and drastically reduces the amount of data to analyze, cf. Sect.’s 3.4 and
5.4.1.8 Condensed Morse pre-order do not lose information about the initial Morse
pre-order and associated Morse tessellation. The map UJ ÞÑ cl UJ, with UJ P

OpXJ,ďJq, defines an injective lattice homomorphism cl : OpXJ,ďJq ↣ OpX,ďq,
whose image OpX,ď:q is the lattice of down-sets of the Morse pre-order, and yields
the factorization:

OpXJ,ďJq OpX,ď:q OpX,ďq SetpXq

OpSC,ďq

–

–
– dyn´1

cf. Thm. 3.28. The discretization dyn: pX,ďq Ñ pSC,ďq is the map that allows us
to alternate between Morse pre-orders and condensed Morse pre-orders , cf. Sect.
3.4, and is dual to the injection cl : OpXJ,ďJq ↣ OpX,ďq. A formula for dyn is
given in Theorem 3.29. In summary, pX,ď:q is the relevant topology that contains
the information about closed attracting blocks. A discrete resolution pXJ,ďJq is a
coarser data structure than pX,ď:q and which yields the same down-sets, cf. Fig.
1.3. The Morse pre-order can be retrieved from the condensed Morse pre-order ,
cf. Thm. 3.19. In Sections 5.1 and 5.3 we exploit this principle in the application to
parabolic systems.

6For example, CW-decompositions.
7Top cells are elements in pX,ďq that are maximal with respect to ď.
8In the application to parabolic systems in Section 5.4 one may achieve a data reduction of orders

of magnitude using discrete resolutions, e.g. for a cubical CW-decomposition of a d-cube we have
4´d ă |XJ

|{|X| ă 2´d.
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ξ0

ξ2

ξ1

ξ3

ξ4

ξ5 ξ6

ξ7

S1 : tξ1u S0 : tξ0u

S2 : tξiu2ďiď6

S3 : tξ7u

FIGURE 1.3. An associated discrete resolution ď
J on the top-cells XJ of

CW-decomposition in Fig. 1.1 [left] and the poset SC of its partial equiv-
alence classes [right], which is order-isomorphic to the poset pT,ďq.

1.2. Algebraization

The above constructions have reduced dynamics to a (continuous) discretiza-
tion tile : X Ñ SC of the space X . A discretization as such captures robust di-
rectionality properties of a flow. However, information about invariant sets is
lost. The third theme in this paper is the algebraization of semi-flows; that is, the
order-theoretic structures that encode the directionality are to be augmented with
(co)homological data which carry information about (robust) invariant dynamics
via Wazewski’s principle. A discretization tile : X Ñ SC, or equivalently a Morse
tessellation, gives rise to a filtering of X consisting of regular closed attracting
blocks, i.e. a lattice homomorphism α ÞÑ FαX , where α P OpSCq is a down-set in
SC and FαX “ tile´1α P ABlockRpφq is an attracting block. In the case of homol-
ogy with field coefficients the representation theory of Cartan-Eilenberg systems,
cf. Sect. 4.1, in particular Franzosa’s connection matrix theory [19, 20, 21, 31, 58],
describes a strict SC-graded chain complex

`

CtilepXq,dtile
˘

whose grading is given
by CtilepXq “

À

SPSCHpFÓSX,FÓSđXq, where H is the singular homology func-
tor, cf. Fig. 1.4[left], cf. App. C.3. From the graded chain complex

`

CtilepXq,dtile
˘

all homologies HpFβX,FαXq, with α, β P OpSCq, can be computed as homol-
ogy of the sub-quotient chain complex Gβ∖αC

tilepXq and which is denoted by
HtilepGβ∖αXq. This data can be visualized as a poset isomorphic to SC, whose el-
ements are pairs

`

S, P tile
µ pGSXq

˘

P SC ˆ Z`rµs, where P tile
µ pGSXq is the Poincaré

polynomial of HtilepGSXq which uses the natural dimension grading of singular
homology, cf. Fig. 1.4[right]. Such a poset will be referred to as the tessellar phase
diagram9

p>,ď:q for pX,ď:q, cf. Sect. 4.4.
A discretization tile : X Ñ SC may be considered purely from a topological

perspective, independent of dynamics. Given a sufficiently ‘nice’ discretization,
the connection matrix theory can be applied to tile. We regard this as part of
the synthesis of dynamics and topology, and using dynamical tools to analyze
topology. In Section 4.2, we show how this leads to a homology theory which we
call tessellar homology and which, in contradistinction to cellular homology, uses

9The tessellar phase diagram is expressed with respect to Borel-Moore homology.
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0 Z2xS2y
à

i“t0,1u

Z2xSiy 0
dtile
1 “

ˆ

1

1

˙

S1 : µ0 S0 : µ0

S2 : µ1

S3 : 0

FIGURE 1.4. The SC-graded chain complex pCtile
pXq, dtile

q [left] of Fig.
1.1 (computed using Z2 coefficients) and associated the tessellar phase
diagram p>,ď

:
q [right]. We display the pair

`

S, P tile
µ pGSXq

˘

as S and
P tile
µ pGSXq as a matter of style.

general tiles instead of CW-cells. In Section 4.3 we show how cellular homology
specifically is recovered.

One of the key advantages of using Morse pre-orders is that tile factors through
the discretization of pX,T q, which enables a computational approach to connec-
tion matrix theory using the algorithms of [31, 32] and associated software [33].
For the sake of the simplicity, we explain this in the case that pX,T q admits a fi-
nite CW-decomposition. The idea is encapsulated in the following diagram, cf.
Sect. 4.3:

(1.2)

pX,ďq

X SC Z

dyn
cell

tile ind

In the case of a CW-decomposition map cell, the associated pre-order is a partial or-
der (face partial order) and the above diagram provides the factorization viapX,ďq.
The fact that we factor tile through pX,ďq allows us to compute pCtilepXq,dtileq by
instead computing connection matrices in two simpler settings. First for the dis-
cretization cell : X Ñ pX,ďq to obtain the cellular chain complex CcellpXq graded
over the poset X of cells which represents the singular homology as cellular ho-
mology; then a second time by re-grading CcellpXq by SC via dyn: X Ñ SC and
using the algorithm of [31] to produce pCtilepXq,dtileq. As indicated above the dis-
cretization tile : X Ñ SC is equivalent to a Morse tessellation pT,ďq

–
ÝÑ pSC,ďq,

where the tiles T P T are given by T “ tile´1S. Since tSu “ β ∖ α, the homology
of T is given by

Hdynpβ ∖ αq – HtilepGβ∖αXq – HcellpGβ∖αXq – HBMpT q,

cf. Thm. 4.27, where the latter is the Borel-Moore homology of T , cf. [8, 9, 23, 28, 26,
37]. Since T is the set-difference of two attracting blocks for φ it is an isolating
block (neighborhood) for φ, cf. [44], and Htilepβ ∖ αq represents the Conley index
of T .
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An additional scalar discretization ind: SC Ñ Z, cf. (1.2), allows a second
grading ofHtile which makeHtile a bi-graded homology theory (in the case of field
coefficients) denoted by Htile

p,q pXq, cf. Sect. 4.2.3. The discretization ind induces a
spectral sequence which allows an additional Z-grading of the tessellar homology
in accordance with the SC-grading of Ctile. As a matter of fact Htile

p,q pGU∖U1Xq is
well-defined for any convex set U ∖ U1 in SC. In this context pCtile,dtileq may
be regarded as chain complex as well as Z-graded differential module/vector
space. Define the Poincaré polynomials Pλ,µpCtileq “

ř

SPSC P
tile
λ,µpGSXq with

P tile
λ,µpGSXq “

ř

p,qPZ
`

rank Htile
p,q pGSXq

˘

λpµq . Then, the following variation on
the standard Morse relations are satisfied, cf. Thm. 4.18,

ÿ

SPSC
P tile
λ,µpGSXq “ P tile

λ,µpXq `

8
ÿ

r“1

p1 ` λrµqQr
λ,µ,

where Qr
λ,µ ě 0 and the sum over r is finite. The p-index is a manifestation of the

block-flow topology and the q-index of the phase space topology making it a true
tale of two topologies. The impact is most apparent in the application to parabolic
flows where we use a canonical discretization lap: SC Ñ Z.

1.3. Parabolic flows and braid invariants

Chapter 5 encompasses the final theme wherein we demonstrate the ideas and
methods in this paper for a large class of flows, called discrete parabolic flows. Such
flows occur in a wide variety of settings, e.g. studying the infinite dimensional
dynamics of scalar parabolic equations which can be realized via discrete parabolic
equations, cf. [25], [65]. Discrete parabolic equations and parabolic flows also play
a prominent role in the theory of monotone twist maps whose dynamics can be
studied using parabolic flows, cf. [2], [14]. The introduction of Morse theory on
braids in [24] was sparked by questions for fourth order Lagrangian dynamics
which use parabolic flows to describe periodic solutions. Finally, parabolic flows
play a pivotal role in computing braid Floer homology, cf. [66].

A parabolic flow φ is defined via differential equations 9xi “ Ripxi´1, xi, xi`1q,

with Ri`d “ Ri, where the (smooth) functions Ripxi´1, xi, xi`1q are monotone
with respect to their first and third argument and their stationary equations, given
by Ripxi´1, xi, xi`1q “ 0, are referred to as parabolic recurrence relations. Parabolic
recurrence relations form a perfect symbiosis with discretized braids. A discretized
braid (diagram) x on n strands and d discretization points is a unordered collection
of sequences ¨ ¨ ¨ , xα0 , x

α
1 , ¨ ¨ ¨ such that xθpαqi`d “ xαi , for a permutation θ P Sn, and

α “ 1, ¨ ¨ ¨ , n.
By viewing such sequences as piecewise linear interpolations between the

anchor points the various strands ‘intersect’, cf. Fig. 1.5[left]. There is a non-
degeneracy condition on the intersections (no tangencies). A collection of station-
ary solutions of φ of integer period forms a discretized braid diagrams denoted by
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S0 : λ0µ0 S1 : λ0µ0

S4 : λ5µ3 S5 : λ5µ3

S7 : λ7µ5 S8 : λ7µ5

S2 : λ3µ1
` λ3µ2

S3 : λ4µ2

S6b : λ6µ4

S9 : λ8µ6

FIGURE 1.5. A discretized (pseudo-anosov) braid y [left], and associated
reduced tessellar phase diagram >pyq [right]. The vertices in >pyq contain
the Poincaré polynomials of the bi-graded parabolic homology, cf. Sect.
5.4.2.

y and referred to as a skeleton, cf. Fig. 1.5[left]. If we add an additional periodic se-
quence x the ensemble of x and y generically forms a braid x rel y, called a relative
discretized braid. Since y is stationary for φ we may consider φpt, xq rel y. When-
ever φpt, xq rel y becomes singular, i.e. strands develop tangencies, then the total
number of intersections of x with the strands in y decreases strictly. This principle
is crucial and emphasizes the intimate relation between parabolic flows and dis-
cretized braids. As such relative braids can be partially ordered using parabolic
flows which form the backbone of the canonical discretization of the block-flow
topology for parabolic flows. We construct special CW-decompositions, cf. Sect. 5,
and discretizations of the block-flow topology via appropriately defined discrete
Lyapunov functions, which allows us to establish Morse tessellations and Morse
representations, cf. Sect. 5.3. In the language of condensed Morse pre-orders the
partial order on the relative braid classes defines the poset pSC,ďq which comes
from the canonical CW-decomposition of X given by the skeleton y and the block-
flow topology given by φ.

In Section 5.4.1 we give an overview of the algorithmic steps in computing
the order structures and connection matrices and in Section 5.4.2 we discuss the
bi-graded parabolic homology. In Section 5.5 we show that the parabolic differ-
ential module (and the associated tessellar phase diagrams) we obtain for para-
bolic flows extend the results in [24] and provide an invariant for positive braids
which also defines a new invariant for scalar parabolic equations, cf. Thm. 5.23.
The importance of Theorem 5.23 is that we obtain complete insight in the homol-
ogy of loop spaces for scalar parabolic equations as well as the boundary homo-
morphisms which contain information about connecting orbits for parabolic equa-
tions. To best explain the discretization of topology and dynamics and the main
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0 Z2xS9y
à

i“7,8

Z2xSiy Z2xS6y

à

i“4,5

Z2xSiy
à

i“2,3

Z2xSiy Z2xS2y
à

i“0,1

Z2xSiy 0

dtile
6 “

˜

1

1

¸

dtile
5 “

´

1 1
¯

dtile
4 “

˜

0

0

¸

dtile
3 “

˜

0 1

1 1

¸

dtile
2 “

´

0 0
¯

dtile
1 “

˜

1

1

¸

dtile
0 “ 0

FIGURE 1.6. Associated complex A pβq, computed over K “ Z2 coeffi-
cients, viewed as chain complex using dimension grading. The index q

for dtile
q reflects the natural grading induced by singular homology.

statement of Theorem 5.23 we consider an example. Let y be a discretized braid
y given in Figure 1.5[left] and φ is any parabolic flow for which y is stationary.
This can be rephrased in terms of a bi-topological space for which y defines a
natural discretization. The sub-poset of homologically non-trivial braid classes in
pSC,ďq is given by the reduced tessellar phase diagram p>,ď:q displayed in Fig.
1.5[right]. The more detailed information is given by the parabolic differential mod-
ule A pβq generated by tile : X Ñ SC and the scalar discretization lap: SC Ñ Z,
which counts the intersections of x with y divided by two, cf. Sect. 5.5 for a de-
tailed definition. As described in Section 5.4.2 lap provides a scalar grading on
the tessellar homology HtilepGU∖U1Xq, with U∖U1 convex in SC, which yields the
parabolic homology H⃗p,qpGU∖U1Xq where

HtilepGU∖U1Xq “
à

p,qPZ
H⃗p,qpGU∖U1Xq.

Figure 1.5[right] lists the Poincaré polynomials of the non-trivial tiles with re-
spect to parabolic homology. The differential module A pβq may be regarded as
a chain complex in Figure 1.6 with homology HBM

q pGSXq “ ‘pPZH⃗p,qpGSXq,
or as Z-graded differential module in Figure 1.7 with homology H⃗p,˚pGSXq “

‘qPZH⃗p,qpGSXq. By making further specification of the entries in dtile the differ-
ential module can also be represented as to show the >-order, cf. Sect. 5.5. Theorem
5.23 shows that the parabolic differential module, and thus the reduced tessellar
phase diagram is a topological invariant for the topological braid βpyq, i.e. all braid
diagrams isotopic to y, cf. Sect. 5.5. Due to Theorem 5.23 the parabolic differential
module and reduced tessellar phase diagram can be denoted by A pβq and >pβq

respectively. In summary, the application of the methods put forth in this paper to
parabolic flows gives a novel approach towards computing algebraic topological
information about infinite dimensional problems.

The themes throughout this paper touch upon many topics. Section 6 con-
cludes with a discussion of related remarks and open problems.



10 1. PRELUDE

0 Z2xS9y
à

i“7,8

Z2xSiy Z2xS6y

à

i“4,5

Z2xSiy Z2xS3y Z2 ‘ Z2xS2y
à

i“0,1

Z2xSiy 0

dtile
8 “

˜

1

1

¸

dtile
7 “

´

1 1
¯

dtile
6 “

˜

0

0

¸

dtile
5 “

´

1 1
¯

dtile
5 “

˜

0 0

0 1

¸

dtile
4 “

˜

0

0

¸

dtile
3 “

˜

1 0

1 1

¸

FIGURE 1.7. The differential module A pβq, computed over K “ Z2 coef-
ficients, with lap number grading. For the entry dtile

p the index p reflects
the lap number.



CHAPTER 2

Topology, discretization and bi-topological spaces

Our philosophy is that discretization is the study of appropriate finite sub-
structures. In this chapter we start with an exposition of topological spaces, clo-
sure algebras and modal algebras and discuss discretization in terms of Boolean
algebras with operators. Closure algebras provide an equivalent way to describe a
topological space. In general modal algebras are also related to topological spaces
which provides the essential link to dynamical systems. The latter can be used to
regard various aspects of dynamics in terms of topology.

2.1. Closure algebras

Let pX,T q be a topological space and let SetpXq denote the (complete and
atomic) Boolean algebra of subsets of X . For pX,T q we define an associated clo-
sure algebra as the pair

`

SetpXq, cl
˘

, where cl : SetpXq Ñ SetpXq is the operator
defined as the closure of a subset, clU “

Ş
␣

U 1 Ą U | U 1 closed
(

, cf. [51], which is
our first source of closure algebras. In general, an operator cl : SetpXq Ñ SetpXq is
a closure operator if all four Kuratowski axioms for a closure operator are satisfied:
for all U,U 1 Ă X ,

(K1) (normal) cl ∅ “ ∅;
(K2) (additive) clpU Y U 1q “ cl U Y cl U 1;
(K3) (sub-idempotent) cl

`

cl U
˘

Ă cl U ;1

(K4) (expansive) U Ă cl U .2

Continuous maps between topological spaces can also be described in terms of
closure algebras. Let g : X Ñ Y be a continuous map between topological spaces.
Then, g´1 defines a map from SetpY q to SetpXq. As a matter of fact g´1 : SetpY q Ñ

SetpXq is a completely additive3 Boolean homomorphism of complete and atomic

1Axiom (K3) in combination with Axiom (K4) this implies that cl is idempotent, i.e. cl
`

cl U
˘

“

cl U .
2The single condition (K): U Y cl U Y cl

`

cl U 1
˘

“ clpU Y U 1q ∖ cl ∅ is equivalent to (K1)-(K4).
3Closed with respect to arbitrary intersections and unions.

11
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Boolean algebras, cf. App. A.3. Consider the (not necessarily commutative) dia-
gram:

(2.1)

SetpXq SetpXq

SetpY q SetpY q

clX

clY

g´1 g´1

The continuity of g is equivalent to the condition clXg
´1pV q Ă g´1pclY V q for all

V Ă Y which makes g´1 a semi-homomorphism of closure algebras. In particular, if
V Ă Y is closed in Y , then g´1pV q is closed in X . In case clXg

´1pV q “ g´1pclY V q

for all V Ă Y the operator g´1 is called a homomorphism of closure algebras,4 in
which case g is an open continuous map.5 A second source for closure algebras are
via pre-ordered sets. Let pX,ďq be a pre-order. Define

clďU :“
§

đU “
␣

x P X | x ď y for some y P U
(

.

Then, pSetpXq, clďq is a closure algebra and the closure operator clď is completely
additive, i.e. Kuratowski axiom (K2) is satisfied with respect to arbitrary unions.
The associated topological space is denoted by pX,Tďq which is an Alexandrov
topological space and the topology Tď is called an Alexandrov topology, i.e. Tď is
closed under arbitrary intersections and unions.

On the other hand every topological space induces a natural pre-order as fol-
lows:

x ďT x1 if and only if x P cltx1u,

which is called the specialization pre-order associated to pX,T q. In general, the
topology TďT induced by ďT is finer than T . In particular

§

đU is not equal to
cl U in that case. If we start from an Alexandrov topology T , then TďT “ T . The
above described duality between topological spaces and pre-orders will be used
to treat discretization of topological spaces, cf. [5] for further details on closure
algebras. A topological space yields a closure algebra where the Boolean algebra
is complete and atomic. This concept can be defined for any Boolean algebra, cf.
Sect. 2.6.3 and App. A.

2.2. Modal operators and modal algebras

A third source for closure algebras is given by modal operators and binary
relations on a set X , cf. App. A. In general, an operator Φ: SetpXq Ñ SetpXq is
called a modal operator if following axioms are satisfied: for all U,U 1 Ă X ,

(M1) (normal) Φ∅ “ ∅;
(M2) (additive) ΦpU Y U 1q “ ΦU Y ΦU 1;

4For a homomorphism of closure algebras the diagram in (2.1) commutes.
5If there is no ambiguity about the topological space the sub-index of cl will be omitted.
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The pair pSetpXq,Φq is called a modal algebra and is an example of a Boolean algebra
with operators, cf. [38], [51]. A modal algebra defines a topology on X . Consider
the set FwdsetpΦq consisting of subsets U Ă X such that ΦU Ă U .

PROPOSITION 2.1. The set FwdsetpΦq defines a bounded, distributive lattice with
binary operations X and Y. Moreover, FwdsetpΦq is closed under arbitrary intersections,
i.e. arbitrary intersections of sets in FwdsetpΦq are again in FwdsetpΦq.

PROOF. The subsets ∅ and X are in FwdsetpΦq since Φ is a normal opera-
tor. Finite unions of sets in FwdsetpΦq are obviously again in FwdsetpΦq since
Φ is additive. Let tUiu be an arbitrary collection is subsets in FwdsetpΦq. Then,
Φ
`
Ş

i Ui

˘

Ă ΦUi Ă Ui and therefore Φ
`
Ş

i Ui

˘

Ă
Ş

i Ui. □

The lattice FwdsetpΦq defines a topology TΦ on X by declaring the subsets in
FwdsetpΦq to be the closed sets. The topology TΦ given by the lattice FwdsetpΦq

can also be characterized by an associated closure operator.

PROPOSITION 2.2. Consider the operator clΦ : SetpXq Ñ SetpXq defined by

(2.2) clΦU “
č

␣

U 1 Ą U | U 1 P FwdsetpΦq
(

P FwdsetpΦq.

Then, clΦ is a closure operator and FwdsetpΦq “ FwdsetpclΦq, i.e. the sets in FwdsetpΦq

are exactly the closed sets defined by clΦ.

PROOF. The definition of clΦ is a standard construction of a closure operator
satisfying the Kuratowski axioms (K1)-(K4). A set U P FwdsetpclΦq satisfies clΦU Ă

U and thus clΦU “ U , i.e. U P FwdsetpΦq and thus FwdsetpclΦq Ă FwdsetpΦq. If
U P FwdsetpΦq, then clΦU “ U which yields FwdsetpΦq Ă FwdsetpclΦq. Combining
both inclusions gives the desired statement. □

The lattice FwdsetpΦq is a complete co-Heyting algebra with binary subtraction
U ´ U 1 :“ clΦpU ∖ U 1q. The specialization pre-order ďΦ defined by the topology
TΦ (or equivalently the closure operator clΦ) is the transitive reflexive closure of
the binary relation ϕ Ă X ˆ X , referred to as the specialization relation, which is
defined by

(2.3) px, x1q P ϕ if and only if x P Φtx1u,

where Φ “ ϕ´1 is regarded as an operator on SetpXq and is an example of a com-
pletely additive modal operator, cf. A.3. As before

§

đU does not coincide with clΦU

in general. This is due to the fact that a modal operator is not completely additive6

in general. For the time being the above described duality between pX,TΦq and
the associated closure algebra pSetpXq, clΦq suffices.

In the case Φ is a completely additive modal operator on SetpXq the specializa-
tion relation recovers Φ and vice versa. To be more precise,

px, x1q P ϕ if and only if px1, xq P ϕ´1 if and only if x P ϕ´1tx1u,

6An operator is said to be completely additive if it is closed under arbitrary unions.
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where for the latter we regard the opposite relation ϕ´1 as modal operator:

(2.4) ΦU :“
ď

xPU

Φtxu, where Φtxu “
␣

y P X | px, yq P ϕ´1 for some x P U
(

.

The transitive reflexive closure ϕ`̀̀“““ “
Ť

kě0 ϕ
k defines a pre-order pX,ϕ`̀̀“““q and

therefore Φ`̀̀“““ “
Ť

kě0 Φ
k is a completely additive closure operator. In particular:

LEMMA 2.3. Φ`̀̀“““U “
§

đU “ clΦU .

PROOF. The first equility is a direct consequence of the duality between ϕ

and Φ. As for the second equality we argue as follows. If clΦU “ U , then U P

FwdsetpΦq, i.e. ΦU Ă U and thus Φ`̀̀“““U “ U . Conversely, if Φ`̀̀“““U “ U , then
ΦU Ă U and thus clΦU “ U . Therefore, Φ`̀̀“““U “ U if and only if clΦU “ U and
Φ`̀̀“““U “ U “ clΦU . □

In this case a binary relation ϕ Ă X ˆ X is the source of a closure algebra:
`

SetpXq,Φ`̀̀“““
˘

. The associated topology is an Alexandrov topology and is equiv-
alent to the specialization pre-order, cf. A.1.

Let pSetpXq,Φq and pSetpY q,Ψq be modal algebras. As for closure algebras a
map g : X Ñ Y yields a Boolean homomorphism g´1 : SetpY q Ñ SetpXq. The
latter is a semi-homomorphism of modal algebras if Φg´1pV q Ă g´1pΨV q for all V Ă Y

and is expressed in the (not necessarily commutative) diagram:

(2.5)

SetpXq SetpXq

SetpY q SetpY q

Φ

Ψ

g´1 g´1

The semi-homomorphism property for Boolean homomorphisms g´1 : SetpY q Ñ

SetpXq is related to continuity of g:

PROPOSITION 2.4. Let g´1 : pSetpY q,Φq Ñ pSetpXq,Ψq be a semi-homomorphism
of modal algebras for a map g : X Ñ Y , i.e. Φg´1pV q Ă g´1pΨV q for all V Ă Y . Then,
g : pX,TΦq Ñ pY,TΨq is a continuous map.

PROOF. The closure operators clΨ and clΨ are given by (2.2). Since g´1 is a
completely additive Boolean homomorphism we have

g´1
`

clΨV
˘

“
č

␣

g´1pV 1q | V 1 Ą V, ΨV 1 Ă V 1
(

.

The fact that g´1 is a semi-homomorphism of modal algebras implies, for V 1 closed
in Y , that Φg´1pV 1q Ă g´1pΨV 1q Ă g´1pV 1q and thus g´1pV 1q is closed in X . This
implies that clΦg´1pV q Ă g´1pclΨV q, which proves that g : X Ñ Y is a continuous
map. □

REMARK 2.5. If Ξ: SetpY q Ñ SetpXq is completely additive Boolean homo-
morphism then Ξ “ g´1 for some map g : X Ñ Y , cf. Prop. A.7 and [38]. The latter
is given by gpxq “ y for the unique y P Y such that x P Ξtyu.
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REMARK 2.6. If Φ and Ψ are completely additive operators then Proposition
2.4 can be proved using transitive reflexive closure. Observe that Φkg´1pV q Ă

g´1pΨkV q for all k ě 0. Then,

clΦg
´1pV q “

ď

kě0

Φkg´1pV q Ă
ď

kě0

g´1pΨkV q “ g´1
`

ď

kě0

ΨkV
˘

“ g´1pclΨV q,

which establishes continuity.

REMARK 2.7. For a pre-order pX,ďq the associated dual given by clďU “
§

đU

defines a complete and atomic and completely additive closure algebra pSetpXq, clďq,
i.e. SetpXq is a complete and atomic Boolean algebra and the closure operator clď
is completely additive. The completely additive closure operator clď retrieves the
pre-order. Similarly, a binary relation ϕ Ă X ˆ X yields a complete and atomic,
and completely additive closure algebra pSetpXq, clΦq, where clΦ “ Φ`̀̀“““ and Φ “

ϕ´1. The closure operator retrieves the transitive reflexive relation ϕ`̀̀“““, but not
ϕ in general. For a complete and atomic, and completely additive modal algebra
pSetpXq,Φq the operator Φ retrieves ϕ. These principles play a role in the duality
theory of closure algebras and modal algebras, cf. App. A.3, Sect. 2.6.3 and [51],
[38]. In this text we are mainly interested in closure algebras and their duality.

REMARK 2.8. Closely related to a closure operator is the notion of a derivative
operator. A modal operator Γ: SetpXq Ñ SetpXq is called a derivative operator if
following axioms are satisfied: for all U,U 1 Ă X ,

(D1) (normal) Γ∅ “ ∅;
(D2) (additive) ΓpU Y U 1q “ ΓU Y ΓU 1;
(D3) (quasi-idempotent) ΓpΓUq Ă U Y ΓU .7

The pair pSetpXq,Γq is called a derivative algebra, cf. [17], [51]. A derivative operator
defines a closure operator via

(2.6) clΓU :“ U Y ΓU.

For every closure operator there exists a derivative operator such that (2.6) holds,
e.g. take Γ “ cl.8

2.3. Discretization of topology

We start with a general description of discretization of topology in terms of
closure algebras. This procedure can then be used for the same purpose in the
setting of modal algebras. These techniques play a role in the discussion of treating
dynamics in terms of topology.

7Axiom (D3) is equivalent to from Axiom (K4) via cl “ id Y Γ.
8The choice of a derivative operator is clearly not unique. An important non-trivial choice is given

by the derived set, the set of limit points of a set U :

ΓU :“
␣

x P X | N X U ∖ txu ‰ ∅ for all neighborhoods N Q x
(

,

which is not equal to cl U in general.
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2.3.1. Closure algebra discretization. Discretization of a topological space
pX,T q in the spirit of closure algebras is an injective Boolean homomorphism9

| ¨ | : SetpXq ↣ SetpXq, where SetpXq is the powerset of a finite set X, in combi-
nation with an appropriately chosen discrete closure operator cl : SetpXq Ñ SetpXq

such that cl|U| Ă |clU| for all U P SetpXq, in which case | ¨ | : SetpXq Ñ SetpXq is a
semi-homomorphism of closure algebras. We refer to the elements ξ P X as cells.
This discretization is captured by the following diagram in the category of closure
algebras and semi-homomorphisms:10

(2.7)

SetpXq SetpXq

SetpXq SetpXq

cl

cl

|¨| |¨|

The closure algebra pSetpXq, clq defines a finite topology on X by declaring U
closed if and only if clU “ U. As X is a finite set any topology on X is neces-
sarily an Alexandrov topology, and is equivalent to the specialization pre-order
pX,ďq

11 defined by

(2.8) ξ ď ξ1 if and only if ξ P cltξ1u,

cf. App. B.3. The discretization described above allows us to regard X as an algebra
`

SetpXq, cl
˘

, as a pre-order pX,ďq, and as topological space X. In general we do not
differentiate between the specialization pre-order and the Alexandrov topology,
and we refer to the triple pX, cl, | ¨ |q as a closure algebra discretization, or CA-
discretization of pX,T q.

DEFINITION 2.9. A CA-discretization is called Boolean if cl|U| “ |clU| for all
U P SetpXq.

This definition in particular implies that (2.7) is commutative in which case the
map |¨| : SetpXq Ñ SetpXq is a homomorphism of closure algebras, cf. [5]. For a pre-
order pX,ďq we define a down-set U Ă X by the property: ξ1 P U, ξ ď ξ1, then ξ P

U. The set of down-sets is denoted by OpX,ďq
12 which by construction is a finite

distributive lattice with binary operations X and Y, cf. App. B.1, B.3 and [15]. Note
that OpX,ďq “ Fwdsetpclq, where cl is the associated closure operator on SetpXq. In
a similar fashion we can define the lattice of up-sets UpX,ďq “ Fwdsetpc̄lq, where

9 In the context of discretizaztion we consider injective homomorphisms with finite range, i.e.
finite subalgebras. The theory can be phrased in more general terms via homomorphisms.

10In the above mentioned category of closure algebras we employ the morphisms are semi-
homomorphisms of closure algebras.

11The Alexandrov topology is T0 if and only if the specialization pre-order is a partial order.
12If there is no ambiguity about the pre-order we write OpXq for short. Another common notation

is Invset`pďq.
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c̄lU “ starU is the conjugate closure operator, cf. App. A.2 and [38]. The join-
irreducible elements of both lattices are characterized as

cl ξ “
§

đξ :“
␣

ξ1 | ξ1 ď ξ
(

and star ξ “
İ

§ξ :“
␣

ξ1 | ξ ď ξ1
(

, ξ P X,

which are called the principal down-sets and up-sets respectively. Intersections of
up-sets and down-sets are the convex sets in pX,ďq

13 and are denoted by CopX,ďq

which is a meet-semilattice with respect to X.

REMARK 2.10. For a pre-order pX,ďq we can define the partial equivalence
classes by ξ „ ξ1 if and only if ξ ď ξ1 and ξ1 ď ξ. The set of partial equivalence
classes is denoted by X{„. The latter is a poset via rξs ď rηs if only only if ξ ď η.
This yields the natural order-preserving projection X π

ÝÑ X{„ defined by ξ ÞÑ rξs.
By construction OpX,ďq – OpX{„q. The map X ↠ X ↠ X{„ is also a discretiza-
tion. The associated CA-discretization

`

X{„, cl, | ¨ |
˘

is defined by clrξs “
§

đrξs and
ˇ

ˇrξs
ˇ

ˇ “
Ť

ξ1Prξs |ξ1| and yields a T0 Alexandrov topology.

2.3.2. Modal algebra discretization. Let pX,TΦq be a topological space de-
fined by a modal operator Φ: SetpXq Ñ SetpXq. The associated closure algebra
is pSetpXq, clΦq with closure operator defined in (2.2). Discretization in terms of
closure algebras can always be formulated in terms of modal algebras. Consider
a discrete modal operator Φ : SetpXq Ñ SetpXq. As explained in Section 2.2 we
obtain a topological space pX,TΦq, whose discrete topology can be described by
either the specialization pre-order ďΦ or the associated closure operator clΦ. A
triple pX,Φ, | ¨ |q is a modal algebra discretization, or MA-discretization of pX,TΦq

if

(MA) Φ|U| Ă |ΦU| for all U P SetpXq,

which is equivalent to the condition that | ¨ | is a semi-homomorphism of modal
algebras and is expressed in the diagram:

(2.9)

SetpXq SetpXq

SetpXq SetpXq

Φ

Φ

|¨| |¨|

PROPOSITION 2.11. Let pX,Φ, | ¨ |q be a MA-discretization of pX,TΦq. Then, the
induced closure operator clΦ : SetpXq Ñ SetpXq given in (2.2) defines a CA-discretization
pX, clΦ, | ¨ |q of X . In particular, the closure operator clΦ is given by clΦ “

Ť

kě0 Φ
k.14

PROOF. Since | ¨ | is a completely additive Boolean homomorphism it is the
inverse image of a map X Ñ X, cf. Prop. A.7 and Rem. 2.5. By Axiom (MA) and
Proposition 2.4 the latter is continuous and thus clΦ|U| Ă |clΦU| for all U Ă X,
which proves that pX, clΦ, | ¨ |q is a CA-discretization of X . Since a finite modal
operator is completely additive the formula for Θ follows from Lemma 2.3. □

13The convex sets in the pre-order pX,ďq are the locally closed subsets in X as topological space.
14The expression Φ`̀̀“““ :“

Ť

kě0 Φ
k is the transitive reflexive closure of Φ, cf. App. A.1.
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The advantage of using a discrete modal operator on SetpXq is a refinement of
the specialization pre-order on X in terms of specialization relation given by:

(2.10) pξ, ξ1q P ϕ if and only if ξ P Φtξ1u.

Observe that ϕ need not be transitive and is not reflexive in general. Moreover,
the transitive reflexive closure ϕ`̀̀“““ is the specialization pre-order of clΦ “ Φ`̀̀“““

in (2.8), cf. Sect. 2.2.

REMARK 2.12. As for pre-orders the notion of down-set for a specialization
relation is formulated as: U Ă X is a down-set for Φ if ξ1 P U and pξ, ξ1q P ϕ, then
ξ1 P U. Note that OpX,ďΦq “ OpX,ϕq “ FwdsetpΦq.

REMARK 2.13. Modal algebra discretization using a derivative operator will
be referred to as DA-discretizations. Binary relations coming from derivative op-
erators will be called weakly transitive, or wK4, cf. [17]. If Γ satisfies the stronger
sub-idempotency axiom in (K3), i.e. ΓpΓUq Ă ΓU , we say that Γ is a strong deriv-
ative operator. This is often the case in dynamics in which instance the associated
specialization relation is transitive (a K4-order).

2.4. Discretization maps

Let pX,T q be a topological space. A discretization map on X is a surjective
map15

(2.11) disc : X ÝÝ↠ X,

where X is a finite set. Since unions and intersections are preserved under preim-
age, disc´1 : SetpXq Ñ SetpXq, is an injective Boolean homomorphism, cf. Footn.’s
9 and 15. In this context, we say that disc´1 is an evaluation map and we use the
notation: |U| :“ disc´1U for U P SetpXq.

2.4.1. Topology consistent pre-orders. As pointed out above any topology
on X is equivalent to its specialization pre-order pX,ďq. We say that ď is a T -
consistent pre-order on X with respect to disc if disc : pX,T q ↠ pX,ďq is continu-
ous, which is equivalent to the condition that cl disc´1U Ă disc´1

§

đU, for allU Ă X,
i.e. cl|U| Ă |cl U|, where cl U “

§

đU. Consequently, when ď is T -consistent, the
triple pX, cl, | ¨ |q is a CA-discretization, and disc : pX,T q ↠ pX,ďq is a continuous
discretization map. If disc is a continuous open map then |¨| “ disc´1 is a homomor-
phism of closure algebras.16 A specialization relation ϕ Ă X ˆ X is T -consistent if
the reflexive transitive closure is T -consistent.

15 As pointed in Footnote 9, in the context of discretization the maps are chosen to be surjective
and are dual to injective closure algebra homomorphisms.

16By (2.8) ξ ď ξ1 if and only if ξ P cl ξ1 which is equivalent to tξu Ă cl ξ1. In the case that | ¨ | is an
injective homomorphism of closure algebras we obtain the equivalent statement |ξ| Ă |cl ξ1| “ cl|ξ1|.
Here we use the convention cltξu “ cl ξ.
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Conversely, given a CA-discretization pX, cl, | ¨ |q, we define disc : X ↠ X via

(2.12) discpxq “ ξ where x P |ξ|,

which is a well-defined map since
Ť

ξ |ξ| “ X and |ξ| and |ξ1| are mutually disjoint
for all ξ ‰ ξ1, cf. Rem. 2.5. By Birkhoff duality the injectivity of | ¨ | implies the
surjectivity of disc, cf. Thm. B.2 and [15, Thm. 5.19]. Moreover, since cl|U| Ă |cl U|,
| ¨ | “ disc´1, the map disc is a continuous map, thus ď is T -consistent. For a
discretization of a subset X of the plane with the associated face partial order ď

in Fig. 1.1[left 1 and 2] the pre-order pX,ďq is a discretization of the topology T

of X . The map disc : X ↠ X assigns a vertex, edge or square to any point in
X . For closure algebras, disc is induced by sending a point x to the cell in which
it is contained, as in Equation (2.12). We can summarize these considerations as
follows:

PROPOSITION 2.14. A surjective, continuous discretization map disc : pX,T q ÝÝ↠

pX,ďq is equivalent to a CA-discretization pX, cl, | ¨ |q with pSetpXq, clq dual17 to pX,ďq

and | ¨ | “ disc´1.

A pre-order ď is a T -co-consistent with respect to disc if disc : X Ñ pX,ěq is
continuous, where ě is the opposite pre-order. This is equivalent to the condition
cl disc´1U Ă disc´1c̄lU, for all U Ă X, where c̄lU :“ starU is the conjugate closure
operator, cf. [51]. In terms of realization this reads cl|U| Ă | starU|. If U is c̄l-closed,
i.e. c̄lU “ starU “ U which implies that U is open in pX,ďq, then the T -co-
consistency implies that |U| is a closed set. Indeed, cl|U| Ă | starU| “ |U| Ă cl|U|

and thus cl|U| “ |U|. Moreover, the closed sets U P OpX,ďq for a T -co-consistent
pre-order are open under realization. If U P OpX,ďq then cl U “ U and therefore
Uc is open which implies that starUc

“ Uc. By the previous |Uc
| “ |U|c is closed

and thus |U| is open.

REMARK 2.15. If we allow the evaluation map | ¨ | : SetpXq Ñ SetpXq to be an
arbitrary homomorphism then the map disc defined in (2.12) is still valid which
allows us to treat the theory of discretization with arbitrary, not necessarily sur-
jective, continuous maps disc : X Ñ X. In this paper we restrict to surjective dis-
cretization maps unless stated otherwise.

REMARK 2.16. For a discretization map disc : X ↠ X, there is always a T -
consistent pre-order. Namely, the trivial, or indiscrete topology on X: cl∅ “ ∅
and clU “ X for all U ‰ ∅, i.e. ď is an equivalence: ξ ď ξ1 and ξ1 ď ξ for all
ξ, ξ1 P X.

2.4.2. Filtering and grading. If ď is a T -consistent pre-order for a discretiza-
tion map disc, then by (2.8) the down-sets U for ď correspond to the closed sets in
X and therefore by the continuity of disc we have that disc´1U P C pX,T q, where

17In terms of Boolean algebras with operators, cf. App. B.3 the pre-order is the dual to the closure
algebra and vice versa. This duality can also be understood in terms of (co)-Heyting algebras.
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C pXq “ C pX,T q
18 denotes the closed sets in X . This yields the lattice homomor-

phism

(2.13) disc´1 : OpX,ďq ÝÑ C pXq
Ă

ÝÑ SetpXq.

In this setting we refer to disc´1 as an OpX{„q-filtering on X and use the filtering
notation: FUX :“ disc´1U “ |U|. Similarly, a subset U Ă X is open if it is an
up-set of X and the image under disc´1 are open sets in X . Dual to the OpX{„q-
filtering is the grading X “

Ť

ξPrξsGrξsX with the property that GrξsX ‰ ∅ for all

ξ P X, cf. App. C.1. The latter is an X{„-grading given by GrξsX
grd

ÞÝÝÑ rξs, where
␣

GrξsX | rξs P pX{„,ďq
(

is an ordered tessellation. The following scheme shows
the duality between CA-discretizations and continuous discretization maps, and
between filterings and gradings, cf. App. C.1:

pX, | ¨ |, clq

CA-discretization
| ¨ | : OpX,ďq Ñ SetpXq

filtering

disc : pX,T q ↠ pX,ďq

continuous discretization
X “

Ť

rξsGrξsX

grading

where GrξsX “ disc´1
rξs. In general a grading on a topological space yields a

discretization which is not necessarily continuous.19 This implies that the above
diagram do not necessarily point in the opposite direction. Finally we define a
class of discretization maps which are favorable for using homology theories.

DEFINITION 2.17. A discretization map disc : X ↠ X is natural if it is contin-
uous and the associated filtering disc´1 : OpX,ďq Ñ SetpXq consists of mutually
good pairs.20

2.5. Bi-topological spaces and discretization

A triple pX,T ,T 1q is called a bi-topological space if the factors pX,T q and
pX,T 1q are well-defined topological spaces. The associated closure algebra for
pX,T ,T 1q is the Boolean algebra with operators pSetpXq, cl, cl1q, where cl and cl1

are the closure operators for T and T 1 respectively and is referred to as bi-closure
algebra for pX,T ,T 1q. A subset U Ă X is a pT ,T 1q-pairwise clopen set for X if U
is closed in T and open in T 1. We denote the set of pT ,T 1q-pairwise clopen sets

18If there is no ambiguity about the topology we write C pXq for short. The same applies to the
open sets OpXq.

19Let X “
Ť

pPP GpX be a P-graded decomposition of X . Then, the map grd: X Ñ P, defined
by grdpxq “ grdpGpXq “ p for all x P GpX , is a discretization map in the sense of Rmk. 2.15. By
restricting to the range one obtains a surjective discretization map, cf. App. C.1.

20Recall that a pair pX,Aq, A Ă X closed, is a good pair if A is a deformation retract of a neigh-
borhood in X , q.v. [34, Thm. 2.13].
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in a bi-topological space pX,T ,T 1q by C OpXq. Similarly, we can define pT 1,T q-
pairwise clopen sets which are open in T and closed in T 1 and are denoted by
C O˚pXq.

The next step is to consider discretization for bi-topological spaces. A dis-
cretization map disc : X ↠ X is a p-continuous map21 between bi-topological
spaces if there exists pre-orders pX,ďq and pX,ď1q that are T -consistent and T 1-
consistent respectively. We write disc : pX,T ,T 1q ↠ pX,ď,ď1q. The associated bi-
topological CA-discretization is denoted by pX, cl, cl1, | ¨ |q where cl and cl1 are the as-
sociated closure operators. Let pX, cl, cl1, | ¨ |q be a bi-topological CA-discretization
for pX,T ,T 1q. This is equivalent to choosing a discretization map disc : X ↠ X
and pre-orders pX,ďq and pX,ď1q such that disc is continuous with respect to both
T and T 1. Since the pre-orders ď and ď1 represent Alexandrov topologies we can
coarsen the finite topologies using both up-sets and down-sets.

DEFINITION 2.18. Let disc : X ↠ X be a discretization map. An antagonistic
pre-order for pX,T ,T 1q is a pre-order pX,ď:q such that

(i) ď: is T -consistent with respect to disc;
(ii) ď: is T 1-co-consistent with respect to disc.

These conditions translate as

(2.14) cl|U| Ă |cl:U|, cl1|U| Ă | star:U|, @U Ă X,

where star: “ c̄l:, the conjugate closure operator, cf. Sect. 2.4.1 and [38]. The triple
pX, cl:, | ¨ |q is called an antagonistic CA-discretization for pX,T ,T 1q.

REMARK 2.19. An equivalent way to say that pX,ď:q is an antagonistic pre-
order is that both

disc : pX,T q ÝÝ↠ pX,ď:q, and disc : pX,T 1q ÝÝ↠ pX,ě:q,

are continuous.

REMARK 2.20. We can use the pairwise clopen sets in pX,T ,T 1q as a base (of
closed sets) for the topology T :. Closed sets in pX,ď:q are pairwise clopen sets
in pX,T ,T 1q, which yields the continuous discretization map disc : pX,T :q ↠

pX,ď:q. We say that T : is the antagonistic topology with respect to the pair pT ,T 1q.
Since closed sets in pX,T :q are not necessarily pairwise clopen it is preferable to
use the concept of pairwise clopen sets in the bi-topological space pX,T ,T 1q.

REMARK 2.21. Antagonistic pre-orders can also be defined by reversing the
role of T and T 1.

Antagonistic pre-orders yield discrete topologies on X since such topologies
are necessarily Alexandrov. One cannot play the same game with T and T 1 on

21J.C. Kelly refers to such map that are continuous with respect to both topologies as p-continuous,
or pairwise continuous maps, cf. [45].
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X since topologies are not Alexandrov in general. For this reason one chooses the
formalism of bi-topological spaces and anatagonistic pre-orders.

Let pX,ď:q be an antagonistic pre-order as in Definition 2.18. Closed sets U
in pX,ď:q are pairwise clopen sets |U| P C OpXq, cf. Sect. 2.4.1. Conversely, if
pX, cl, cl1, | ¨ |q is a bi-topological CA discretization for pX,T ,T 1q then the lattice
embedding:

(2.15) ι : OpPq ↣ OpX,ďq X UpX,ď1q “: C OpXq,

yields an antagonistic pre-order for pX,T ,T 1q. Indeed, if we use Birkhoff duality
to dualize the homomorphism ι : OpPq ↣ SetpXq, q.v. Thm. B.2 and Rem. B.3, we
obtain the order-preserving surjection

(2.16)
π : X ↠ P, ξ ÞÑ πpξq :“ min

␣

p P P | ξ P ι
`
§

đp
˘(

“ max
!

min
␣

U P JpOpPqq | ξ P U
(

)

,

where J
`

OpPq
˘

is the poset of join-irreducible elements in OpPq. By construction a
pre-order pX,ď:q is defined by

ξ ď: ξ1 if and only if πpξq ď πpξ1q,

is an antagonistic pre-order with OpX,ď:q – OpPq. In this case we say that ď: is an
antagonistic coarsening of pX, cl, cl1, | ¨ |q. The lattice embedding OpX,ď:q ↣ SetpXq

is dual to the identity map

(2.17) id : X Ñ pX,ď:q.

THEOREM 2.22. A pre-order ď: is an antagonistic pre-order for disc : pX,T ,T 1q Ñ

pX,ď:q if and only if there exists a bi-topological CA-discretization pX, cl, cl1, | ¨ |q such
that OpX,ď:q is given by (2.15), i.e. an antagonistic pre-order is equivalent to an antago-
nistic coarsening.

PROOF. One direction is given be the construction in (2.15). It remains to show
that an antagonistic pre-order satisfying Definition 2.18(i)-(ii) is an antagonistic
coarsening. If we define the discrete closure operators cl “ cl: and cl1 “ star:,
then OpX,ďq “ OpX,ď:q and UpX,ď1q “ OpX,ď:q, which proves the theorem. □

In practical situations, given a bi-topological CA-discretization pX,ď,ď1q, we
can choose OpX,ď:q “ C OpXq. Let JpOpX,ď:qq be the poset of join-irreducible
elements in C OpXq. From the results in [44, 40] consider a representation pSC,ďq

of JpOpX,ď:qq defined by

(2.18) SC :“
␣

S “ U∖ Uđ
| U P JpOpX,ď:qq

(

,

with S ď S 1 if and only if U Ă U1, with U,U1 P JpOpX,ď:qq uniquely determined
by S “ U ∖ Uđ and S 1 “ U1 ∖ U1đ.22 If we regard the pre-order pX,ď:q as a
directed graph then the sets S P SC correspond to the strongly connected compo-
nents of the directed graph which is the motivation for the abbreviation SC, cf.

22For every U P JpOpX,ď:qq there exists a unique immediate predecessor Uđ
P OpX,ď:q.
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Rem. 2.24. The posets pSC,ďq and
`

JpOpX,ď:qq,Ă
˘

are isomorphic by construction
and the elements in SC correspond to the partial equivalence classes in pX,ď:q, cf.
Rem. 2.10, which yields the (order-preserving) projection dyn: pX,ď:q ↠ pSC,ď

q “ X{„.23 The latter may be regarded as a finite discretization of X. The em-
bedding OpX,ď:q Ă

ÝÑ OpX,ďq implies that dyn is also an order-preserving map

dyn: pX,ďq ↠ pSC,ďq which factors as pX,ďq
id

ÝÝÝ↠ pX,ď:q
dyn

ÝÝÝÝ↠ pSC,ďq. In-
deed, a downset in pX,ď:q is a downset in pX,ďq and therefore ď Ă ď: as pre-
orders. By the same token we have that dyn is order-reversing with respect to ď1

which follows from the embedding OpX,ď:q Ă
ÝÑ UpX,ď1q and therefore ě1 Ă ď: as

pre-orders. Summarizing, the maps dyn are order-preserving and order-reversing
respectively:

(2.19)

pX,ďq

pX,T ,T 1q pX,ď:q SC P

pX,ď1q

id
dyn

part

disc

disc

disc

disc

dyn π

id
dyn

part

The map dyn is again a continuous discretization and the composition

(2.20) X X SCdisc

tile

dyn

denoted by tile, may be regarded as a continuous map tile : pX,T q Ñ pSC,ďq and
as a continuous map pX,T 1q Ñ pSC,ěq by factoring through pX,ď:q and pX,ě:q
respectively, and which is equivalently obtained by factoring through pX,ďq by
factoring through pX,ď1q respectively. Every antagonistic pre-order for pX,T ,T 1q

defines a grading GSX
tile

ÞÝÝÑ S of X given by

X “
ď

SPSC
GSX, GSX “ tile´1S,

which is called an antagonistic tessellation of X . We apply these bi-topological dis-
cretization techniques in the next two chapters in the context of discretizing semi-
flows.

REMARK 2.23. An antagonistic pre-order pX,ď:q satisfies ď Ă ď: and ě1 Ă ď:

as pre-orders and thus ď _ ě1 Ă ď: as pre-orders. The ‘vee’ on the pre-order is
the transitive closure of the union. The case OpX,ď:q “ C OpXq corresponds to
ď _ ě1 “ ď:.

23We use the terminology dyn as it is used later on in the setting of the block-flow topology .
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REMARK 2.24. There are various (equivalent) perspectives for presenting bi-
nary relations on X:

(a) as a binary relation, i.e. ϕ Ă X ˆ X;
(b) as a directed graph (digraph) ϕwith vertices X and edge set

␣

ξ Ñ ξ1 | pξ, ξ1q P ϕ´1
(

;

(c) as modal operator Φ “ ϕ´1 : SetpXq Ñ SetpXq.

We alternate between these perspectives, using whichever is conceptually most
convenient. As digraph the strongly connected components are found via (A.3).

2.6. Examples and further extensions

In this section we discuss examples of discretization of topology starting with
regular closed sets. The latter will be applied in the setting of CW-decompositions.
We start with outlining regular closed sets.

2.6.1. Regular closed sets. Of particular importance in this text are the regu-
lar closed sets which play a central role in the construction of Morse tessellations.
A subset U Ă X is regular closed if cl intU “ U . The set of regular closed sets
in any topological space X is denoted by RpX,T q and the latter forms a com-
plete Boolean algebra with unary operation U# “ clU c and binary operations
U _ U 1 “ U Y U 1 and U ^ U 1 “ cl intpU X U 1q, cf. [68, Sect. 2.3]. By the same to-
ken we can define the regular closed sets in a CA-discretization pX, cl, | ¨ |q and we
denote regular closed sets in X by RpXq.24 Regular closed subsets can be obtained
from closed subsets OpX,ďq.

PROPOSITION 2.25 (cf. [44], Lem. 22). The map cl int : OpX,ďq Ñ RpXq, defined
by U ÞÑ cl intU, is a surjective lattice homomorphism.25

The atoms in SetpXq are given by the set X. Since RpXq is a finite Boolean
algebra it is a power set on a set of atoms. Define the maximal elements in X with
respect to ď by XJ, i.e. ξ P XJ if and only if star ξ “ ξ. Such elements are called
top cells and form an anti-chain in pX,ďq.

PROPOSITION 2.26. The atoms of RpXq are given by the set
␣

cl ξ | ξ P XJ
(

. More-
over, cl : SetpXJq Ñ RpXq is an isomorphism with inverse U ÞÑ U X XJ.

PROOF. We start with the observation that ξ P XJ represents an open subset.
Indeed, star ξ “ ξ and thus ξ “ int ξ. Then, cl ξ “ cl int ξ is a regular closed set
since cl int cl int ξ “ cl int ξ. Suppose ξ R XJ, i.e. ξ is not maximal in pX,ďq. Since
ξ “ tξu is a singleton set and since inttξu Ă tξu we conclude that int ξ “ ξ, or
int ξ “ ∅. Suppose the former holds. Then, since ξ is not maximal, tξu Ĺ star ξ “

24In this text we mainly consider regular closed sets with repect to one topology T . Therefore the
notation RpXq and RpXq does not cause any ambiguities.

25This result holds for any topological space X .
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tξu, a contradiction. Therefore, int ξ “ ∅. Let U “
Ť

tξu be a regular closed set.
Then, by invoking Proposition 2.25 we have

U “ cl intU “ cl int
´

ď

tξu

¯

“
ď

cl int ξ “
ď

!

cl ξ | ξ P XJ
)

,

which proves that every regular closed set is union of elements cl ξ, for ξ P XJ.
The latter form an anti-chain in RpXq, i.e., again invoking Proposition 2.25,

(2.21) cl ξ ^ cl ξ1 “ cl int ξ ^ cl int ξ1 “ cl int
`

ξ X ξ1
˘

“ ∅,

which proves that cl ξ, for ξ P XJ, are atoms. The map cl : SetpXJq Ñ RpXq pre-
serves union. Consider cl U ^ cl U1. By (2.21) we have

cl U ^ cl U1 “
ď

cl ξ ^
ď

cl ξ1 “
ď

cl ξ2 “ cl
´

ď

tξ2u
¯

,

where
Ť

tξ2u “ U X U1, which proves that cl : SetpXJq Ñ RpXq is a homomor-
phism. Any U P RpXq is uniquely represented as U “

Ť

cl ξ “ cl
`
Ť

tξu
˘

, ξ P XJ

which shows that U X XJ yields the unique set of generating cells ξ P XJ. □

Regular closed sets in X do not necessarily yield regular closed sets in X un-
der evaluation. However, if pX, cl, | ¨ |q is Boolean, cf. Defn. 2.9, then we have the
following correspondence: |U| “ |cl intU| “ cl| intU| “ cl int |U|

26 and thus a
subset U Ă X is regular closed in X if and only if |U| Ă X is regular closed in X .
This way the image of | ¨ | : RpXq Ñ RpXq yields the finite Boolean subalgebra
R0pXq contained in RpXq. The subalgebra R0pXq is generated by the set of atoms
J
`

R0pXq
˘

:“
␣

cl|ξ| | ξ P XJ
(

.27

PROPOSITION 2.27. Let pX, cl, | ¨ |q be a Boolean CA-discretization for X . Then, the
map

} ¨ } : SetpXJq Ñ R0pXq, ξ ÞÑ }ξ} :“ cl|ξ|, 28

is a lattice isomorphism and thus a Boolean isomorphism.

Conversely, a finite sub-algebra R0pXq Ă RpXq yields a finite closure algebra
`

SetpXq, cl
˘

as follows. Define rR0pXqs as the smallest sub-algebra in SetpXq con-
taining R0pXq. Denote the set of atoms by J

`

rR0pXqs
˘

:“
␣

|ξ| | ξ P X
(

for some
finite set X. This defines the pre-order pX,ďq via the relation: ξ ď ξ1 if and only if
|ξ| Ă cl|ξ1|. Via the pre-order we obtain a closure operator on SetpXq via (2.8).

PROPOSITION 2.28. Let R0pXq Ă RpXq be a finite sub-algebra. Then, rR0pXqs Ă

SetpXq defines a unique finite closure algebra
`

SetpXq, cl
˘

, where the cl is defined by
(2.8).

The above statement can be rephrased as: a finite sub-algebra R0pXq Ă RpXq

induces a unique Boolean CA-discretization pX, cl, | ¨ |q forX , where | ¨ | an injective
homomorphism of closure algebras.

26If pX, cl, | ¨ |q is Boolean then int |U| “ | intU| follows from the relation for closure.
27The join-irreducible element in a finite Boolean algebra and the atoms that generate the Boolean

algebra.
28The notation } ¨ } is called closed realization.
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2.6.2. CW-decomposition maps. Consider a discretization disc : X ↠ X with-
out indicating a specific pre-order on X for now. Let Bq and B̄q denote the open
and closed unit balls in Rq respectively (where B0 and B̄0 denote the one point
space). We say that ξ is an q-cell if |ξ| is homeomorphic to an open ball Bq . The
integer q is called the dimension of ξ and is denoted dim ξ. Suppose disc has the
property that every ξ is an q-cell for some q. Given such a discretization map as-
signing dimension to a cell is an order-preserving map

dim: X Ñ pN,ďq,

whenX is regarded as anti-chain. Note therefore that the anti-chainX is a naturally
graded set with respect to dim, i.e., X “

Ť

qPNGqX, where GqX “ dim´1q is the set
of q-cells. The latter also yields the filtering

§

đq ÞÑ FÓqX,
§

đq P OpNq,

where, by Birkhoff duality, FÓqX “ dim´1
§

đq,
§

đq “ t0, 1, ¨ ¨ ¨ , qu and q P N. The

composition X disc
ÝÝÑ X dim

ÝÝÑ N, denoted by skel, also defines a discretization on X
and yields the filtering

§

đq ÞÑ FÓqX “ skel´1
§

đq,
§

đq P OpNq.

DEFINITION 2.29. A CW-decomposition map on X , denoted by cell : X ↠ X, is
a discretization map where each ξ P X is an q-cell for some q. Moreover, for every
ξ P X there is a continuous map fξ : B̄q Ñ X , where q “ dim ξ, such that

(i) fξ restricts to a homeomorphism fξ|Bq : Bq Ñ |ξ|;
(ii) fξpB̄q ∖Bqq Ă FÓpq´1qX .

A subset U Ă X is open (closed) if and only if f´1
ξ pUq is open (closed) in B̄q for all

ξ P X. A CW-decomposition map is regular if the maps fξ are embeddings.

Note that if X admits a (finite) CW-decomposition map then X is a compact
Hausdorff space, cf. [34]. Since X is Hausdorff, it follows that }ξ} “ fξpB̄qq.29 CW-
decompositions are general enough to include simplicial and cubical complexes.
From a CW-decomposition map we can define the following finite topology in
terms of a pre-order on X:

ξ ď ξ1 if and only if |ξ| Ă cl|ξ1|,

which is called the face partial order on X.

LEMMA 2.30. The pre-order pX,ďq is a partial order and the associated Alexandrov
topology is a T0 topology.

PROOF. Suppose ξ ‰ ξ1 and ξ „ ξ1, i.e. ξ ď ξ1 and ξ1 ď ξ, which implies that
cl|ξ| “ cl|ξ1| and thus fξpB̄qq “ fξ1 pB̄qq. Furthermore, fξpB̄qq “ fξpB̄q∖BqYBqq “

29By continuity fξpB̄qq Ă clfξpBqq “ }ξ}. On the other hand }ξ} “ clfξpBqq Ă clfξpB̄qq “

fξpB̄qq since the continuous image of a compact set is compact and in a Hausdorff space compact sets
are closed.
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fξpB̄q ∖ Bqq Y |ξ|, and similarly fξ1 pB̄qq “ fξ1 pB̄q ∖ Bqq Y |ξ1|. By assumption
|ξ| X |ξ1| “ ∅, which yields that

|ξ| Ă fξ1 pB̄q ∖Bqq Ă FÓpq´1qX, |ξ1| Ă fξpB̄q ∖Bqq Ă FÓpq´1qX.

This contradicts the definition of FÓpq´1qX and the fact that all cells are realized as
disjoint sets in X . Therefore ξ „ ξ1 if and only if ξ “ ξ1 and ď is a partial order and
the Alexandrov topology is T0. □

The next step is to show that cell : X Ñ pX,ďq is a continuous discretiza-
tion map, i.e., that ď is T -consistent. Moreover, we also show that dim is order-
preserving.

LEMMA 2.31. Let cl : SetpXq Ñ SetpXq be the closure operator defined by face partial
order ď. Then,

(i) ď is a T -consistent partial order and cl|ξ| “ |cl ξ| for all ξ P X;
(ii) dim: pX,ďq Ñ pN,ďq is order-preserving.

PROOF. We have that cl|ξ| “ }ξ} “ fξpB̄qq and thus, as before using Definition
2.29(i)-(ii), fξpB̄qq “ fξpB̄q ∖Bq YBqq “ fξpB̄q ∖Bqq Y |ξ|. This implies that cl|ξ|

is a union of sets |ξ1| and more precisely

cl|ξ| “
ď

␣

|ξ1| | |ξ1| Ă cl|ξ|
(

“
ď

␣

|ξ1| | ξ1 ď ξ
(

“
ˇ

ˇcl ξ
ˇ

ˇ,

which proves (i). As for (ii) we have that cl|ξ| ∖ |ξ| “ fξpB̄q ∖ Bqq “
Ť
␣

|ξ1| | ξ1 ď

ξ
(

Ă FÓpq´1qX and thus dim ξ1 ď q ´ 1. Consequently, ξ1 ď ξ implies dim ξ1 ď

dim ξ. □

Lemma 2.31 shows in particular that cell is continuous open map and thus a
discretization with respect to the face partial order. Moreover, | ¨ | is an injective
homomorphism of closure algebras. Indeed by additivity of | ¨ | and cl we have
that cl|U| “ |cl U| for all U P SetpXq. The associated CA-discretization pX, cl, | ¨ |q is
Boolean and is called a CW-decomposition for X .

LEMMA 2.32. A CW-decomposition map cell : X Ñ X is a natural discretization
map.30

PROOF. For every closed subset U Ă X the realization |U| Ă X is a sub CW-
decomposition and therefore a deformation retract of a neighborhood inX , cf. [34,
Prop. A.5.]. □

2.6.3. General closure and bi-closure algebras. A more general notion of clo-
sure algebra is given by a Boolean algebra B “ pB,_,^,␣ q and an operator cl : B Ñ

B (an abstract closure operator) satisfying Axiom (K1)-(K4).31 The Boolean alge-
bra B is not necessarily complete, nor atomic. Such algebras are referred to as

30cf. Defn. 2.17.
31Replace ∅ and X by the neutral elements 0 and 1 respectively, as well as the binary operations

and complement.
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closure algebras and are denoted as pB, clq. In [51] various representation results
for general closure algebras are given. For a closure algebra the lattice of closed
elements is given by Fwdsetpclq “ tb P B | cl b ď bu. The latter can be consid-
ered as generalized topological space, q.v. [55]. In terms of closed sets this entails that
Fwdsetpclq is a bounded lattice, cf. Prop. 2.1 and if

Ź

b, b P Fwdsetpclq, exists in B,
then

Ź

b P Fwdsetpclq. Moreover, the expression max
␣

a | b ď a, cl a “ a
(

exists in
B. By definition the latter satisfies b ď max

␣

a | b ď a, cl a “ a
(

ď cl b and thus
it exists and cl b “

Ź
␣

a | b ď a, cl a “ a
(

. The generalized topological space is
denoted

`

B,Fwdsetpclq
˘

. Closure algebras are equivalent to generalized topolog-
ical spaces. In a similar fashion a bi-closure algebra is given by a Boolean algebra
and two abstract closure operators cl, cl1 : B Ñ B and is denoted by pB, cl, cl1q. For
bi-closure algebras we have an associated generalized bi-topological space. The
same consideration hold if we used derivative operators.

For bi-closure algebras discretization can be formulated as bofore. An embed-
ding

| ¨ | :
`

SetpXq, cl, cl1
˘

↣
`

B, cl, cl1
˘

,

is a bi-topological CA-discretization if cl|U| Ă |clU| and cl1|U| Ă |cl1U| for all U Ă

X. In order to describe discretization in terms of continuous discretization maps
we need to use a representation of the bi-closure algebra such as the approach by
Mckinsey-Tarski, cf. [51], or Jonsson-Tarski, cf. [38].

In a slightly more general setting one may define a modal algebra by specify-
ing a Boolean algebra B and an operator Φ: B Ñ B satisfying (M1)-(M2).32 The
latter is called a(n) (abstract) modal operator and the associated modal algebra is
denoted by pB,Φq. For a modal algebra the lattice of closed elements is given by
FwdsetpΦq “ tb P B | Φb ď bu. Similarly a bi-modal algebra is given by two modal
operators Φ,Φ1 : B Ñ B and is denoted by pB,Φ,Φ1q. Even though the closed
element almost yield generalized topological spaces the correspondence is more
involved in this case.

32As for closure algebras use the neutral elements 0 and 1.



CHAPTER 3

Flow topologies and discretization of dynamics

In the previous sections we discussed topological and bi-topological spaces
in terms of closure algebras which is the appropriate language for formalizing
discretization of topology. The next step is to model the dynamics of semi-flows
on topological spaces via appropriately constructed topologies onX . Such topolo-
gies may be realized in many different ways and we refer to the dynamics induced
topologies as flow topologies. The objective is not to develop explicit methods for
discretizing dynamics but to describe the contours of a theory that discretizes dy-
namics in terms of discretizing two topologies.

3.1. Dynamics as topology

As discussed in the previous sections a topological space pX,T q can be equiv-
alently described via the closure algebra cl : SetpXq Ñ SetpXq. This description is
convenient for introducing new topologies in relation to dynamical systems.

3.1.1. Basic flow topologies. For a semi-flow φ define the (completely addi-
tive) modal operators Γ´,Γ` : SetpXq Ñ SetpXq given by

(3.1) U ÞÑ Γ´U :“
ď

tą0

φp´t, Uq, U ÞÑ Γ`U :“
ď

tą0

φpt, Uq,

The operators Γ´ and Γ` which are called the strict backward image and strict for-
ward image operators respectively. The operators cl´ “ id Y Γ´ and cl` “ id Y Γ`

are obtained by taking t ě 0 and satisfy all four Kuratowski axioms (K1)-(K4) for
closure operators. The derivative operators Γ´ and Γ` define the topologies T ´

and T ` on X respectively, which are Alexandrov topologies on X . The associ-
ated specialization pre-order on X defined by T ` will be denoted by ď` and is
defined by y ď` x if and only if y P cl`txu. The latter is characterized by

y ď` x if and only if y “ φpt, xq for some t ě 0.

The pre-order ď` does record the directionality of the flow ϕ but discards the
sense of time and invariance. The closed sets in T ` are the forward invariant sets
for ϕ and are denoted by Invset`pφq. As a matter of fact, using the notation in Sect.
2.2, we have that Invset`pφq “ FwdsetpΓ`q “ Fwdsetpcl`q. The two topologies T

and T ` combined comprise the bi-topological space pX,T ,T `q. The associated
specialization pre-order onX defined by T ´ will be denoted by ď´ and is defined
by y ď´ x if and only if y P cl´txu. This pre-order is characterized by y ď´ x if

29
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and only if y P φp´t, xq for some t ě 0, i.e. x “ φpt, yq for some t ě 0. This
shows that ď´ is the opposite pre-order to ď` and closed sets in T ` are open sets
in T ´ and vice versa. The Alexandrov topologies T ´ and T ` are each other’s
opposites. The closed sets in T ´ are the backward invariant sets for φ and are
denoted by Invset´pφq. The two topologies T and T ´ combined comprise the
bi-topological space pX,T ,T ´q.

REMARK 3.1. For the topologies T ´ and T ` the closure and conjugate clo-
sure operators are related: c̄l` “ star` “ cl´ and c̄l´ “ star´ “ cl`.

Since cl´ and cl` are closure operators Γ´ and Γ` are (canonical) derivative
operators satisfying the Axioms (D1)-(D3). Observe that

(3.2)

Γ`
`

Γ`U
˘

“
ď

tą0

φ
`

t,
ď

są0

φps, Uq

¯

“
ď

tą0

ď

są0

φpt, φps, Uqq

“
ď

s`tą0

φps` t, Uq “ Γ`U,

and therefore Γ` satisfies the stronger idempotency axiom (K3), i.e. Γ`pΓ`Uq “

Γ`U and Γ` is an idempotent derivative operator. In the same way one proves
that Γ´ satisfies the idempotency axiom in (K3).

The derivative operator Γ` is associated with a binary relation on X : y ă` x

if and only if y “ φpt, xq for some t ą 0. Observe that the ă` is a transitive relation
and the reflexive closure yields the specialization pre-order ď`. Points x P X for
which Γ`txu “ txu correspond to fixed points of ϕ and are examples of reflexive
points for ă`, i.e. x ă` x. Other reflexive points are given by periodic orbits
for ϕ, cf. [1]. The derivative operator Γ` does not detect invariant sets in general.
Indeed, for φpt, xq “ x`t the set U “ p0,8q satisfies Γ`U “ U but is not invariant.
To capture invariance one can use τ -forward image operator Γ`τ and topology T `

τ

by considering forward images from t ě τ and similarly for τ negative. cf. Sect.
6.1. In view of the considerations in Sect. 2.2 one can also consider the topology
Tτ defined via the modal operator Φ defined by ΦU “ φpτ, Uq for some τ ‰ 0. In
particular we have that

T ` Ă T `
τ Ă Tτ , τ ą 0,

and the same for τ ă 0 and all topologies are Alexandrov. The flow topologies
capture directionality but do not require any continuity properties on ϕ. An in-
teresting feature of topological dynamics is to study convergence and decomposi-
tions. To do so we will now explore an alternative way to recast dynamics in terms
of topology.

REMARK 3.2. If φ is a continuous semi-flow then the continuity of φpt, ¨q with
respect to the topology T ` is immediate. Continuity of φwith respect to T yields
interaction of the two topologies as a manifestation of the continuous semi-flow
φ on X . This implies the subcommutativity for T and T `, i.e. U Ă X T `-closed
implies that cl U is T `-closed. This makes the space pX,T ,T `q a pT ,T `q-
subcommutative bi-topological space.
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3.1.2. The block-flow topology T ´
‚ . As our aim is an algebraization of dy-

namics that recovers invariance based on Wazewski’s principle, cf. [12], we study
the attracting and repelling blocks of φ. Recall that closed attracting blocks are de-
fined by

(3.3) ABlockC pφq :“
␣

U Ă X | cl U “ U, φpt, Uq Ă intU, @t ą 0
(

.

Let U,U 1 P ABlockC pφq. If the singular homology satisfies HpU,U 1q ‰ 0, then
InvpU ∖ U 1q ‰ ∅, cf. Sect. 4.5. In order to incorporate attracting blocks into the
theory of (bi)-closure algebras we construct topologies derived from the basic flow
topologies. In general, there are a number of options to define such topologies.
We highlight one particular choice that serves the purpose of constructing closed
attracting blocks, cf. Sect. 6.1.

LEMMA 3.3. The operator Γ´‚ :“ Γ´cl is a modal operator.

PROOF. Axioms (M1)-(M2) in Section 2.2 are satisfied since cl is a closure op-
erator and Γ´ is a derivative operator, which establishes Γ´‚ as a normal, additive
operator on SetpXq. □

The operator Γ´‚ does not define a derivative operator since (D3) is not satis-
fied in general. Using the theory in Section 2.2 Γ´‚ can be used to define a topology
on X .

DEFINITION 3.4. A subset U Ă X is closed with respect to Γ´‚ if and only if
Γ´‚ U Ă U . Such set are denoted by FwdsetpΓ´‚ q.

By Proposition 2.1 FwdsetpΓ´‚ q defines a topology on X which is denoted by
T ´

‚ and is called the block-flow topology on X . Observe that the condition that
U Ă X is T ´

‚ -closed is equivalent to the condition φp´t, cl Uq Ă U for all t ą 0.
The associated closure operator is given by

(3.4) cl´‚ U :“
č

␣

U 1 Ą U | U 1 P FwdsetpΓ´‚ q
(

.

By definition the block-flow topology T ´
‚ is not necessarily an Alexandrov topol-

ogy. A subset U Ă X is T ´
‚ -closed if cl´‚ U “ U .

PROPOSITION 3.5. The block-flow topology T ´
‚ is a coarsening of the Alexandrov

topology T ´ which is generated by cl´, i.e. cl´ Ă cl´‚ .

PROOF. By definition Γ´U Ă Γ´‚ U Ă U which implies Γ´U Ă U . Therefore,
cl´ Ă cl´‚ . □

PROPOSITION 3.6. The maps φpt, ¨q are continuous in the block-flow topology T ´
‚

for all t ě 0.

PROOF. For the backward image it holds that φp´t,Γ´Uq “ Γ´φp´t, Uq, t ě

0, and thus φp´t,Γ´cl Uq “ Γ´φp´t, cl Uq Ą Γ´cl φp´t, Uq. Suppose U is T ´
‚ -

closed, i.e. Γ´‚ U Ă U . Then,

Γ´‚ φp´t, Uq Ă φp´t,Γ´‚ Uq Ă φp´t, Uq,



32 3. FLOW TOPOLOGIES AND DISCRETIZATION OF DYNAMICS

which proves that φp´t, Uq is T ´
‚ -closed. The latter proves that for every t ě 0

the map φpt, ¨q is continuous in the T ´
‚ -flow topology. □

Observe, by Proposition 3.6, that φpt, ¨q is continuous in both topologies T

and T ´
‚ . The block-flow topology T ´

‚ defines a new, derived subcommutative
bi-topological space pX,T ,T ´

‚ q. Open and closed sets in the block-flow topol-
ogy T ´

‚ can be characterized via the semi-flow φ.

LEMMA 3.7. A subset U Ă X is closed in the block-flow topology T ´
‚ if and only if

(3.5) φp´t, cl Uq Ă U, @t ą 0.

Similarly, a subset U Ă X is open in the block-flow topology T ´
‚ if and only if

(3.6) φpt, Uq Ă intU, @t ą 0.

PROOF. By definition a subset U Ă X is T ´
‚ -closed if and only if cl´‚ U “ U

which implies Γ´‚ U Ă U and thus Γ´clU Ă U . The latter implies thatφp´t, clUq Ă

U for all t ą 0. Conversely, if (3.5) holds then Γ´cl U Ă U and thus cl´‚ U “ U .
By definition a subset U Ă X is T ´

‚ -open if and only if U c is T ´
‚ -closed, i.e.

φp´t, cl U cq Ă U c for all t ą 0. The latter is equivalent to φp´t, cl U cqc Ą U for all
t ą 0, which results in the equivalent statement that φp´t, intUq Ą U for all t ą 0.
If we compose the latter with φpt, ¨q we obtain

φpt, Uq Ă φ
`

t, φp´t, intUq
˘

Ă intU, @t ą 0.

On the hand, composition of (3.6) with the inverse image φp´t, ¨q gives

U Ă φ
`

´t, φpt, Uq
˘

Ă φp´t, intUq, @t ą 0,

which prove that U is T ´
‚ -open. □

The pT ,T ´
‚ q-pairwise clopen sets in pX,T ,T ´

‚ q are defined as sets U Ă X

that are closed in T and open in T ´
‚ .

THEOREM 3.8. A subset U Ă X is a closed attracting block, cf. (3.3), if and only if
U is a pT ,T ´

‚ q-pairwise clopen set in pX,T ,T ´
‚ q.

PROOF. This follows from Lemma 3.7 and the definition of closed attracting
blocks, cf. Eqn. (3.3). □

The set of closed attracting blocks ABlockC pφq is a sublattice of SetpXq, cf.
[42, 43], [40]. This lattice is not complete in general. The pT ´

‚ ,T q-pairwise clopen
sets correspond to open repelling blocks. Indeed, |U| is open and (3.6) we have that
φp´t, cl |U|q Ă |U| for all t ą 0. We denote the open repelling blocks by RBlockOpφq.

REMARK 3.9. The continuity of φ in the T -topology can be relaxed to an R`-
parameter family φpt, ¨q of continuous maps in the T -topology for all t ě 0. This
implies in particular that we can apply discretization and topologization to other
families of maps such as t P Z` which is equivalent to iterating a map, i.e. discrete
time dynamics. Continuity of φpt, ¨q implies a more equal role for both topologies.



3.2. DISCRETIZATION OF THE block-flow topology 33

The continuity of φ on R`ˆX comes in in two instances, (i) equivalent discretiza-
tion via condensed Morse pre-orders , cf. Sect. 3.3, and (ii) algebraization in order
to invoke Wazewski’s principle for finding invariant sets, cf. Sect. 6.1 and [12].

REMARK 3.10. If we consider variations of the operator Γ´‚ such as Γ`‚ “ Γ`cl

then the pT ´
‚ ,T q-clopen sets are open attracting blocks and the pT ,T ´

‚ q-clopen
sets are the closed repelling blocks. Other variations entail cl Γ` and cl Γ´, cf.
Rem. 3.2 and Sect. 6.1. Our definition of block-flow topology is suitable for the
theory in this text.

3.2. Discretization of the block-flow topology

In Section 2.3 we discussed discretization of topology in terms of closure al-
gebras and derivative algebras. The standard CW-decompositions of spaces are
examples of such discretizations. In this section we apply the closure algebra dis-
cretization to the block-flow topology which provides the appropriate discretiza-
tion of dynamics. As we have encoded φ as a topological space pX,T ,T ´

‚ q, we
can apply the tools from Section 2.3, e.g., CA-discretizations, MA-discretizations,
discretization maps and topology consistent pre-orders.

Let X be a finite sets and let cl´‚ : SetpXq Ñ SetpXq be a closure operator such
that cl´‚ |U| Ă |cl´‚ U| for all U P SetpXq. This induces a pre-order ď´‚ by (2.8) and
yields the continuity of disc : pX,T ´

‚ q Ñ pX,ď´‚ q defined in Eqn. (2.12). Con-
versely, if ď´‚ is any T ´

‚ -consistent pre-order with respect to disc then the associ-
ated closure operator cl´‚ defines a CA-discretization for pX,T ´

‚ q.

LEMMA 3.11. A pre-order ď´‚ on X with associated closure operator cl´‚ : SetpXq Ñ

SetpXq is T ´
‚ -consistent with respect to disc : X ↠ X if and only if

(3.7) φ
`

´t, cl|ξ|
˘

Ă
ˇ

ˇcl´‚ ξ
ˇ

ˇ, @t ą 0, and @ξ P X.

PROOF. The discretization disc : X ↠ X is continuous if and only if U closed
in pX,ď´‚ q implies that |U| is T ´

‚ -closed. Assume (3.7) is satisfied. Let cl´‚ U “ U,
then

φp´t, cl|U|q “
ď

ξPU
φp´t, cl|ξ|q Ă

ď

ξPU
|cl´‚ ξ|

“

ˇ

ˇ

ˇ
cl´‚

´

ď

ξPU
tξu

¯
ˇ

ˇ

ˇ
“ |cl´‚ U| “ |U|, @t ą 0,

which proves that Γ´‚ |U| Ă |U| and thus |U| is T ´
‚ -closed. Conversely, if disc

is continuous, then U closed in pX,ď´‚ q implies |U| is T ´
‚ -closed and therefore

φp´t, cl|U|q Ă |U|. Choose U “ cl´‚ ξ. This implies that

φp´t, cl|ξ|q Ă φp´t, cl|cl´‚ ξ|q Ă |cl´‚ ξ|, @t ą 0, and @ξ P X.

which establishes (3.7). □

In the discrete setting we can define the discrete analogues of the block-flow
topology pX,T ´

‚ q via discretizations of T and T ´. Let Γ´ : SetpXq Ñ SetpXq be a
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discrete derivative for T ´ and define the additive operator Γ´‚ :“ Γ´cl : SetpXq Ñ

SetpXq.

LEMMA 3.12. The triple pSetpX,Γ´‚ , |¨q defines a MA-discretization of pX,T ´
‚ q.

The associated discrete closure operator is given by cl´‚ “
Ť

kě0

`

Γ´‚
˘k and the triple

pX, cl´‚ , | ¨ |q is a CA-discretization for pX,T ´
‚ q.

PROOF. In order to establish pSetpX,Γ´‚ , |¨q as a MA-discretization we use the
fact that cl defines a CA-discretization pX, cl, | ¨ |q for pX,T q and Γ´ defines a
MA-discretization pX,Γ´, | ¨ |q for pX,T ´q. This implies, for U Ă X, that

(3.8) Γ´‚ |U| “ Γ´cl|U| Ă Γ´|clU| Ă |Γ´cl U| “ |Γ´‚ U|,

which by Proposition 2.11 shows that pSetpX,Γ´‚ , |¨q is a MA-discretization of pX,T ´
‚ q

and provides the expression for cl´‚ . It remains to show that disc : X ↠ X is con-
tinuous. Let U “ tξu, then (3.8) yields φp´t, cl|ξ|q Ă Γ´‚ |ξ| Ă |Γ´‚ ξ| Ă |cl´‚ ξ| for all
t ą 0 which, by Lemma 3.11, proves that disc continuous. □

The following lemma formulates a criterion for discretizing the block-flow
topology T ´

‚ without using a discretization for T ´.

LEMMA 3.13. Let Φ : SetpXq Ñ SetpXq be a modal operator such that

(3.9) φ
`

´t, cl|ξ|
˘

Ă
ˇ

ˇΦξ
ˇ

ˇ, @t ą 0, and @ξ P X.

Then, the operator cl´‚ “ Φ`̀̀“““ “
Ť

kě0 Φ
k : SetpXq Ñ SetpXq is a closure operator and

yields a CA-discretization pX, cl´‚ , | ¨ |q of the block-flow topology pX,T ´
‚ q.

PROOF. The fact that Φ`̀̀“ is closure operator follows from Lemma 3.12. By
assumption

Ť

tą0 φp´t, cl|ξ|q “ Γ´‚ |ξ| Ă |Φξ|. As in the proof of Lemma 3.12 this
implies that φp´t, cl|ξ|q Ă Γ´‚ |ξ| Ă |Φξ| Ă |Φ`̀̀“““ξ| Ă |cl´‚ ξ| for all t ą 0 which
proves that disc is continuous, completing the proof. □

The following result gives a local version of the above criterion and provides a
practical method for constructing CA-discretizations for the block-flow topology.
Fig. 3.1 displays an example of a discretization of both pX,T q and pX,T ´

‚ q.

THEOREM 3.14. Let pX,T q be compact and let Φ : SetpXq Ñ SetpXq be a modal
operator. Assume that for every ξ P X there exists tξ ą 0 such that

(3.10) φ
`

´t, cl|ξ|
˘

Ă
ˇ

ˇΦξ
ˇ

ˇ, @0 ă t ď tξ, and @ξ P X.

Then, pX, cl´‚ , | ¨ |q, with cl´‚ “ Φ`̀̀“““, is a CA-discretization for pX,T ´
‚ q.

PROOF. The proof of based on the following observation. By the compactness
of X we may assume, without loss of generality, that tξ ě t˚ ą 0 for all ξ P X.
Then, φp´t, cl|ξ|q Ă |Φξ| for all 0 ă t ď t˚ and for all ξ P X. Observe that

φp´2t, cl|ξ|q “ φ
`

´t, φp´t, cl|ξ|q
˘

Ă φ
`

´t, |Φξ|
˘

Ă φ
`

´t, cl|Φξ|
˘

Ă |Φ2ξ|,
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ξ1

ξ2

ξ3

ξ4

ξ5

X ď Φ´1 ď
´
‚ ě

´
‚ ď

:

FIGURE 3.1. The topological space pX,T q and semi-flow ϕ [left 1]. A
discretization of X with T -consistent pre-order pX,ďq [middle 2, 3]. The
relation Φ´1 [middle 4] which generates the T ´

‚ -consistent pre-order
pX,ď

´
‚ q [right 5]. The discretization map disc : X Ñ X is continuous with

respect to both topologies. Common coarsening of pX,ďq and pX,ě
´
‚ q

[right 6] resulting in a Morse pre-order pX,ď
:
q [right 7]. All pre-orders

are represented by their Hasse diagrams.

which yields φp´kt, cl|ξ|q Ă |Φkξ| Ă |Φ`̀̀“““U|, for all k ě 0 and for all 0 ă t ď t˚.
As in the proof of Lemma 3.13, φp´t, cl|ξ|q Ă |Φ`̀̀“““ξ| Ă |cl´‚ ξ| for all t ą 0 which
proves by Lemma 3.11 that disc is continuous, and thus pX,Φ`̀̀“““, | ¨ |q is a CA-
discretization for pX,T ´

‚ q. □

REMARK 3.15. The operator Φ defines a relation on X: pη, ξq P ϕ if and only
if η P Φξ, cf. App. A.3. The transitive, reflexive closure of ϕ is the pre-order ď´‚

associated to cl´‚ :“ Φ`̀̀“““.

REMARK 3.16. For discretizing the flow topologies T ´ and T ` we can use
the criteria in Lemmas 3.11 and 3.9 by discarding the topology T , i.e. take cl to be
the identity map. For example a discrete closure operator cl` : SetpXq Ñ SetpXq

yields a CA-discretization for T ` if and only if φpt, |ξ|q Ă |cl`ξ| for all t ě 0 and
for all ξ P X, i.e. T `-consistency for the associated pre-order ď`.

REMARK 3.17. The definition of the block-flow topology in Section 3.1.2 uses
the modal operator Γ´‚ . This construction works for any modal operator Φ on
SetpXq as is explained in Section 2.2.

3.3. Morse pre-orders

In this section we explain the implications of discretization with respect to
two topologies in the sense of pT ,T ´

‚ q- pairwise clopen sets. We consider the
bi-topological space pX,T ,T ´

‚ q and we use the theory in Section 2.5 to discuss
discretization in this setting. Let disc : X ↠ X be a discretization map and let
pX,ď:q be an anatagonistic pre-order for pX,T ,T ´

‚ q, which motivates the follow-
ing definition:
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∅

tξ2u tξ4u

tξ1, ξ2u tξ2, ξ4u tξ4, ξ5u

tξ1, ξ2, ξ4u tξ2, ξ4, ξ5u

tξ2, ξ3, ξ4u

tξ1, ξ2, ξ3, ξ4u tξ2, ξ3, ξ4, ξ5u

tξ1, ξ2, ξ3, ξ4, ξ5u

Ş

∅

tξ1u

tξ1, ξ2, ξ3u

tξ1, ξ2, ξ3, ξ4u

tξ1, ξ2, ξ3, ξ4, ξ5u

“

∅

tξ1, ξ2, ξ3, ξ4u

tξ1, ξ2, ξ3, ξ4, ξ5u

FIGURE 3.2. Intersection of both the lattice of down-sets OpX,ďq and
up-sets UpX,ď

´
‚ q for Fig. 3.1 yields the coarsening pSC,ďq [right] of the

Morse pre-order pX,ď
:
q.

DEFINITION 3.18. Let disc : X ↠ X be a discretization map. A Morse pre-order
on X is an anatagonistic pre-order ď: for pX,T ,T ´

‚ q, i.e.

(i) ď: is T -consistent with respect to disc;
(ii) ď: is T ´

‚ -co-consistent with respect to disc.

The associated closure operator is denoted by cl: : SetpXq Ñ SetpXq.

By Theorem 2.22 pX,ď:q is an antagonistic coarsening of discretizations for
both T and T ´

‚ , cf. Sect. 2.5. The conditions for an antagonistic pre-order im-
ply that for U Ă X we have that (i) cl|U| Ă |cl:U| and (ii) cl´‚ |U| Ă | star:U|. In
particular, if U P OpX,ď:q, then cl:U “ U and thus |U| is T -closed. Moreover,
if U P OpX,ď:q, then |U| is T ´

‚ -open, cf. Sect. 2.4.1, which implies that |U| sat-
isfies φpt, |U|q Ă int |U| for t ą 0, cf. Lem. 3.7. These facts combined show that
U P OpX,ď:q implies that |U| is a pT ,T ´

‚ q-pairwise clopen set and therefore a
closed attracting block, i.e. |U| P ABlockC pφq. We have the following commutative
diagram:

(3.11)

SetpXq ABlockC pφq

SetpXq OpX,ď:q

Ą

|¨| |¨|

Ą

THEOREM 3.19. Let disc : X ↠ X be a discretization map. A pre-order pX,ď:q is a
Morse pre-order on X for pX,T ,T ´

‚ q if and only if |cl:ξ| is T -closed and

(3.12) φpt, |ξ|q Ă int |cl:ξ|, @t ą 0,

for all ξ P X.

PROOF. If pX,ď:q is a Morse pre-order then for every U P OpX,ď:q, |U| is T -
closed and φpt, |U|q Ă int |U| for t ą 0. Take U “ cl:ξ. Then, |cl:ξ| is T -closed and
φpt, |ξ|q Ă φpt, |cl:ξ|q Ă int |cl:ξ| for all t ą 0.
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Conversely, suppose |cl:ξ| is T -closed and (3.12) is satisfied. To prove that
pX,ď:q is a Morse pre-order we show that it is T -consistent and T ´

‚ -co-consistent
with respect to disc. Let U P OpX,ď:q. Then, cl:U “ U and

|U| “ |cl:U| “
ˇ

ˇcl:
ď

tξu
ˇ

ˇ “
ˇ

ˇ

ď

cl:ξ
ˇ

ˇ “
ď

ˇ

ˇcl:ξ
ˇ

ˇ,

is T -closed. Therefore, U closed in pX,ď:q implies that disc´1U “ |U| is T -closed
and thus ď: is T -consistent with respect to disc. Moreover,

φpt, |U|q “ φ
`

t,
ď

|ξ|
˘

“
ď

φpt, |ξ|q Ă
ď

int |cl:ξ|

Ă int
ď

|cl:ξ| “ int |cl:U| “ int |U|, @t ą 0,

which implies that |U| is T ´
‚ -open. Therefore, U closed in pX,ď:q implies that

disc´1U “ |U| is T ´
‚ -open by (3.6). Recall that T ´

‚ -co-consistency can be charac-
terized as follows: Uc

P OpX,ě:q, then |U|c “ |Uc
| is T ´

‚ -closed, which is equiv-
alent to U P OpX,ď:q, then |U| is T ´

‚ -open, cf. Sect. 2.4.1. Using the latter proves
that ď: is T ´

‚ -co-consistent with respect to disc. □

REMARK 3.20. The T -consistency of pX,ď:q with respect to disc implies that
cl|ξ| Ă |cl:ξ| for all ξ P X. In particular, this implies that φpt, cl|ξ|q Ă φpt, |cl:ξ|q Ă

int |cl:cl:ξ| “ int |cl:ξ|, for all t ą 0 and for all ξ P X.

If Φ : SetpXq Ñ SetpXq is a modal operator such that

(3.13) φ
`

t, |ξ|
˘

Ă int
ˇ

ˇΦξ
ˇ

ˇ, @t ą 0, and @ξ P X.

then Theorem 3.12 implies that the operator clΦ “ Φ`̀̀“““ “
Ť

kě0 Φ
k : SetpXq Ñ

SetpXq is an antagonistic closure operator for pX,T ,T ´
‚ q, cf. Lem. 3.13. If pX,T q

is compact then (3.13) can be weakened to 0 ă t ď tξ, cf. Thm. 3.14

3.3.1. Morse tessellations. For a Morse pre-order pX,ď:q the down-sets yield
a sublattice OpX,ď:q of closed attracting blocks. Following the theory in Section
2.5 a Morse pre-order pX,ď:q yields a finite discretization map dyn: X ↠ SC which
is defined by combining the formulas in (2.16) and (2.18). The latter is dual to the
embedding OpSCq – OpX,ď:q ↣ SetpXq. The composition

X
disc

ÝÝÝÝ↠ X
dyn

ÝÝÝÝ↠ SC,

defines a continuous T0-discretization of X which is denoted by tile : X Ñ SC, cf.
(2.20) and which defines an SC-grading on X , cf. App. C.1. Compare the latter

with the composition X
disc

ÝÝÝÝ↠ X
dim

ÝÝÝÝ↠ N which defines an N-grading on X .
The diagrams in (1.1) and (2.19) show how dyn is order-preserving and order-
reversing with respect to pX,ďq and pX,ď´‚ q respectively, cf. Sect. 2.5. Diagram
(1.1) also shows the continuous T0-discretization maps

tile : pX,T q Ñ pSC,ďq and tile : pX,T ´
‚ q Ñ pSC˚,ěq,
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by factoring through pX,ďq and through pX,ď´‚ q respectively. A Morse pre-order
can therefore be thought of as grading of X which, as T0-discretization, is a con-
tinuous map tile in the above sense. A down-set U in pSC,ďq is a down-set in
pX,ďq and an up-set in pX,ď´‚ q and therefore closed in pX,T q and and open in
pX,T ´

‚ q respectively. By Lemma 3.7 this implies that down-sets U in pSC,ďq re-
alize to closed attracting neighborhoods tile´1U P ABlockC pφq. On the level of
classes S P SC the inverse image of tile yields an SC-graded tessellation pT,ďq

with

(3.14) T :“
␣

T “ tile´1S | S P SC
(

,

such that
§

đT is T -closed and T ´
‚ -open, i.e. φpt, xq P int

§

đT for every x P T and
for all tiles T . The latter follows since

§

đT “
§

đtile´1S “ tile´1
§

đS and
§

đS is a
down-set in SC, cf. [44, Defn. 8]. This motivates the definition:

DEFINITION 3.21 (cf. [44], Cor. 4). An ordered tessellation pT,ďq ofX , cf. Defn.
C.1, is called a Morse tessellation for ϕ if for every T P T

(i)
§

đT is T -closed;
(ii)

§

đT is T ´
‚ -open, i.e. φ

`

t, x
˘

P int
§

đT , for all x P T and for all t ą 0.

The sets T P T are called Morse tiles.1

Conversely, Morse tessellations yield Morse pre-orders and associated space
discretizations. Indeed, for a Morse tessellation pT,ďq we declare the tiles to be
the cells in X and the partial order is the Morse pre-order on X. By definition this
defines a discretization for both pX,T q and pX,T ´

‚ q. In the next subsection we
discuss a more refined reconstruction based on regular closed sets.

REMARK 3.22. One can obviously build larger sets X by for example consid-
ering T or T ´

‚ closure of the tiles T . One can also define fine structure within the
tiles. In the next section we explain a specific reconstruction in the case of regular
closed tiles.

Morse tessellations are a defining structure for Morse representations, cf. [44].
The considerations in this subsection explain that Morse tessellations are equiva-
lent to Morse pre-orders which will be the central structure for discussing connec-
tion matrix theory in Sect. 4.

3.3.2. Regular closed attracting blocks. This section discusses a special prop-
erty of closed attracting blocks, cf. (3.3).

THEOREM 3.23. Let U P ABlockC pφq be a closed attracting block, then U is a regu-
lar closed attracting block, i.e. ABlockC pφq “ ABlockRpφq, where the latter denotes the
lattice of regular closed attracting blocks. Moreover,

U ^ U 1 “ U X U 1,

1Equivalently, for every I P OpT,ďq, |I| :“
Ť

TPI T P ABlockpφq, i.e. T “ TpNq where N is given
by N “ t|I| | I P OpT,ďqu Ă ABlockpφq.
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for all U,U 1 P ABlockC pφq.

PROOF. Let U Ă X be a closed attracting block. By definition cl intU Ă U .
Suppose U ∖ cl intU ‰ ∅. Let x P U ∖ cl intU . Choose tn ą 0 with tn Ñ 0 as
n Ñ 8. Since U is an attracting block we have that yn :“ φptn, xq P intU for
all tn ą 0. By the continuity yn Ñ x as n Ñ 8 which implies that x P cl intU ,
a contradiction. Therefore U “ cl intU , which proves that U is a regular closed
attracting block, cf. [43, 44].

If U,U 1 P ABlockC pφq, then U X U 1 P ABlockC pφq and thus U X U 1 is a closed
attracting block and therefore a regular closed attracting block. This implies that
U X U 1 “ cl intpU X U 1q “ U ^ U 1. □

By Theorem 2.22 we may assume that a Morse pre-order pX,ď:q is induced by
a bi-topological CA-discretization pX, cl, cl´‚ , |¨|q for pX,T ,T ´

‚ q. Assume without
loss of generality that OpX,ď:q “ C OpXq and cl “ cl: and cl´‚ “ star:. Moreover,
assume that pX, cl, | ¨ |q is Boolean CA-discretization. Let U P C OpXq, then, since
|U| P ABlockRpφq, the set U is regular closed and |UXU1| “ |U|X|U1| “ |U|^|U1| “

|U ^ U1|, which yields the following regular closed analogue of (3.11):

(3.15)

RpXq ABlockRpφq

RpXq OpX,ď:q

Ą

|¨| |¨|

Ą

The down-sets for a Morse pre-order yield a sublattice of ABlockC pφq. Conversely,
for a finite sublattice N Ă ABlockC pφq we can construct a Boolean CA-discretization,
cf. Sect. 3.4.2 and Rem. 3.31. Morse pre-orders provide an important reduction of
discretization data as is explained in the next section.

3.4. Condensed Morse pre-orders

In this section we assume that pX, cl, |¨|q is Boolean CA-discretization of pX,T q.
The fact that closed attracting blocks are regular closed sets, cf. Thm. 3.23, is a cru-
cial property for reducing the data structures in the theory of Morse pre-orders.
Such a discretization will be referred to as a condensed Morse pre-order .

3.4.1. Pre-orders on top cells. The bottom embedding OpX,ď:q ↣ RpXq in
(3.15) is inclusion since U X U1 “ U ^ U1, which follows from the fact that the
evaluation map | ¨ | : RpXq ↣ RpXq is a homomorphism and pX, cl, | ¨ |q is Boolean.
Since RpXq – SetpXJq, cf. Prop. 2.26, we can dualize the homomorphism

OpSC,ďq
–

ÝÑ OpX,ď:q ↣ RpXq
–

ÝÑ SetpXJq,

which yields the surjection π : XJ ↠ pSC,ďq, where XJ is unordered and where
SC – J

`

OpX,ď:q
˘

.
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DEFINITION 3.24. The induced pre-order ďJon XJ, defined by

ξ ďJ ξ1 if and only if πpξq ď πpξ1q,

is called a called a condensed Morse pre-order for ď:.2

By construction we have that OpX,ď:q – OpXJ,ďJq – OpSC,ďq. The asso-
ciated closure operator on SetpXJq is denoted by clJ. By Proposition 2.26, UJ P

OpXJ,ďJq implies cl UJ P OpX,ď:q and thus, since pX, cl, | ¨ |q is Boolean, cl |UJ| “

|cl UJ| P ABlockRpφq. Consequently φ
`

t, |cl UJ|
˘

Ă int |cl UJ| for all t ą 0.
Let UJ “ clJξ, with ξ P XJ. Then, φ

`

t, }ξ}
˘

Ă φ
`

t, |cl clJξ|
˘

Ă int |cl clJξ| “

int cl|clJξ| “ int }clJξ} for all t ą 0. The latter is a condition on only the top cells.
We show below that any pre-order pXJ,ďJq satisfying the latter is a condensed
Morse pre-order induced by a Morse pre-order.

THEOREM 3.25. A pre-order pXJ,ďJq is a condensed Morse pre-order for ď: if and
only if

(3.16) φ
`

t, }ξ}
˘

Ă int
›

›clJξ
›

›, @t ą 0.

Condition (3.16) is a characterization of condensed Morse pre-orders and can
be used as alternative definition of condensed Morse pre-order .

REMARK 3.26. If pX,T q is a compact topological space then the criterion in
(3.16) is equivalent to the condition: for every ξ P XJ there exists a tξ ą 0, such
that φ

`

t, }ξ}
˘

Ă int
›

›clJξ
›

› for all 0 ă t ď tξ.

REMARK 3.27. For a binary relation ϕ Ă XJˆ XJ the transitive, reflexive clo-
sure ϕ`̀̀“““ defines a pre-order on XJ. If (3.16) is satisfied with clJϕ “ pϕ`̀̀“““q´1,
then ϕ will also be referred to as a condensed Morse pre-order for ď:. The def-
inition of condensed Morse pre-order is reminiscent of the notion of weak outer
approximation in relation to the commutative diagram in (3.15), cf. [40], [43, Defn.
3.7], [44].

The Boolean algebra SetpXJq is a sublattice in SetpXq. The embedding does not
preserve the top element and the inclusion is not therefore Boolean. The closure
operator cl : SetpXJq Ñ SetpXq, given by U ÞÑ cl U P OpX,ďq, is additive but not
a lattice homomorphism in general. Since i : XJ ãÑ pX,ďq, with XJunordered, is
an order-embedding3 Birkhoff duality yields the surjective lattice homomorphism
j : O

`

X,ď
˘

↠ SetpXJq given by U ÞÑ UJ :“ U X XJ. Schematically we pose the

2Since OpX,ď:q – OpSC,ďq – OpXJ,ďJq it follows that a pre-order ďJ is the restriction of ď: to
the top cells XJ, cf. Proof of Thm. 3.25.

3The top cells XJ form an anti-chain in
`

X,ď
˘

, cf. Sect. 2.6.1.
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following lifting diagram:

(3.17)

OpX,ďq

OpXJ,ďJq SetpXJq

j
cl

id

Theorem 3.28 below shows that the identity map can be lifted as closure.

THEOREM 3.28. Suppose pXJ,ďJq is a pre-order that satisfies (3.16). Then, the
restriction cl : OpXJ,ďJq ↣ OpX,ďq is an injective lattice homomorphism with j ˝ cl “

id.

PROOF. By definition UJ “
Ť

ξPUJtξu and since } ¨ } : SetpXJq Ñ RpXq is an

injective Boolean homomorphism, cf. Prop. 2.27, we have that }UJ} “
Ť

ξPUJ }ξ}.

In combination with (3.16), the additivity of clJ and the fact that UJ P OpXJ,ďJq
we conclude

φ
`

t, }UJ}
˘

“
ď

ξPUJ

φ
`

t, }ξ}
˘

Ă
ď

ξPUJ

´

int
›

›clJξ
›

›

¯

Ă int
´

ď

ξPUJ

›

›clJξ
›

›

¯

“ int
›

›

›

ď

ξPUJ

clJξ
›

›

›
“ int

›

›clJUJ
›

› Ă int }UJ}, @t ą 0,

which proves that }UJ} is an attracting block for ϕ. Since OpXJ,ďJq and ABlockRpφq

are sublattices of SetpXJq and RpXq respectively, and since } ¨ } : SetpXJq ↣ RpXq

is an injective Boolean homomorphism the evaluation map } ¨ } : OpXJ,ďJq ↣

ABlockRpφq is a injective lattice homomorphism. In particular we conclude that
|cl UJ| P ABlockRpφq and cl UJ P OpX,ďq.

To show that the restriction of cl is a homomorphism it remains to check that
the unit and intersection are preserved. By definition cl XJ “ X which proves
that the unit is preserved. By Proposition 2.26 we have that cl UJ P RpXq and by
Theorem 3.23, |cl UJ| X |cl U1J| “ |cl UJ| ^ |cl U1J|. This implies,

|clpUJX U1Jq| “ cl|UJX U1J| “ }UJX U1J} “ }UJ} ^ }U1J} “ }UJ} X }U1J}

“ |cl UJ| X |cl U1J| “ |cl UJX cl U1J|,

where we use Proposition 2.27 to conclude that }UJX U1J} “ }UJ} ^ }U1J}. The
fact that | ¨ | is injective yields clpUJX U1Jq “ cl UJX cl U1J, which completes the
proof. □

PROOF OF THM. 3.25. The direction that a condensed Morse pre-order satis-
fies (3.16) is given above. It remains to show that (3.16) yields a Morse pre-order.
Suppose (3.16) is satisfied. Then, by Theorem 3.28, cl : OpXJ,ďJq Ñ OpX,ďq pro-
vided an embedding sublattice. From (2.15)-(2.17) we obtain a pre-order pX,ď:q
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such that the range of the above closure is the lattice OpX,ď:q:

OpX,ď:q OpXJ,ďJq

OpX,ďq

Ă

cl

–

cl

The pre-order pX,ď:q is the desired Morse pre-order that induces pXJ,ďJq. If we
choose ď´‚ “ ě: we obtain ď: as antagonistic pre-order for pX, cl, cl´‚ , | ¨ |q, cf. Thm.
2.22. □

The novelty of the above construction is that the (injective) composition

OpSC,ďq OpXJ,ďJq OpX,ďq SetpXq
– cl Ă

dualizes to the finite discretization

(3.18) dyn: pX,ďq ÝÝ↠ pSC,ďq,

which is defined in Section 3.3.1 and is given by the formulas in (2.16) and (2.18).
The finite discretization dyn recovers the Morse pre-order ď: via ξ ď: ξ1 if and
only if dyn ξ ď dyn ξ1, and ďJ is the restriction of ď: to XJ. The advantage of
using regular closed sets is that the Morse pre-order is completely determined
by the restriction pXJ,ďJq which is a much smaller data structure in general and
bypasses the topologies given by ď and ď´‚ . The following result gives a formula
for determining dyn in terms of ďJ:

THEOREM 3.29. Suppose pXJ,ďJq is a pre-order that satisfies (3.16). The finite
discretization dyn: pX,ďq ÝÝ↠ pSC,ďq is given by

(3.19) ξ ÞÑ dynpξq “ min
SC

!

“

ηJ
‰

| ηJ P star ξ X XJ
)

,

where
“

ηJ
‰

P SC is the partial equivalence class in pXJ,ďJq containing ηJ.

PROOF. Consider the commutative diagram

(3.20)

X SC

JpOpX,ďqq JpOpSCqq

dyn

ιX ιSC

Jpclq

the maps ιX and ιSC are given by ξ
ιX

ÞÝÝÑ
§

đξ and rξJs
ιSC

ÞÝÝÑ
§

đrξJs, and cl : OpSCq ↣

OpX,ďq. By the commutativity we have that dyn “ ι´1
SC ˝ Jpclq ˝ ιX, and JpclqpUq “

min cl´1
`
İ

§U
˘

P JpOpSCqq, U P JpOpX,ďqq, cf. Thm. B.2. Recall that cl´1
pUq “

tUJ P OpSCq | cl UJ “ Uu. Note that in OpX,ďq the up-set
İ

§ιXpξq is the set of
closed subsets in X that contain ιXpξq “

§

đξ. By definition cl´1
`
İ

§ιXpξq
˘

are all
UJ P OpSCq such that cl UJ “ U for some U P OpX,ďq with

§

đξ Ă U. The latter is
equivalent to ξ P U. Since cl UJ P OpSCq this implies that cl´1

`
İ

§ιXpξq
˘

“
␣

UJ P

OpSCq | ξ P cl UJ
(

. Since join-irreducible elements generate all elements in a finite
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distributive lattice we have that cl´1
`
İ

§ιXpξq
˘

“
␣

UJ P JpOpSCqq | ξ P cl UJ
(

and
thus

JpclqpιXpξqq “ min
␣

UJ P JpOpSCqq | ξ P cl UJ
(

,

which is attained by a unique pU
J

P JpOpSCqq. Recall that UJ P JpOpSCqq if and only
if UJ“

§

đS, S “ rξJs for some ξJ P XJ. Therefore, ξ P cl UJ if and only if ξ P cl ηJ

for some ηJ P
§

đrξJs. By duality ξ P cl ηJ if and only if ηJ P star ξ X XJ. Consider
the set

␣

rηJs P SC | ηJ P star ξ X XJ
(

.

Let rηJs and rη̃Js be minimal. Then,
§

đrηJs Ă pU
J

and
§

đrη̃Js Ă pU
J

, which implies

that rηJs “ rη̃Js, and
§

đrηJs “ pU
J

. □

REMARK 3.30. For condensed Morse pre-orders the commutative diagram in
(3.15) is replaced by

(3.21)

RpXq ABlockRpφq

SetpXJq OpXJ,ďJq

Ą

}¨} }¨}

Ą

Condensed Morse pre-orders give rise to regular closed Morse tessellations.

3.4.2. Regular closed tessellations. A condensed Morse pre-order yields a
Morse pre-order. The range of the injective lattice homomorphism cl : OpXJ,ďJ
q Ñ OpX,ďq can be expressed as OpX,ď:q via a pre-order pX,ď:q — a Morse
pre-order. For UJ P OpXJ,ďJq we can give a representation of SC in terms of
regular closed tiles. By construction }UJ} P ABlockRpφq and we denote the as-
sociated sublattice of regular closed attracting blocks by N Ă ABlockRpφq. Then,
SC – JpNq – T, where T “ }UJ} ´ }UJđ

} :“ }UJ} ^ }UJđ

}# P RpXq, cf. [44]. From
[44, Lem. 23] we have that

}UJ} ´ }UJđ

} “ cl
`

}UJ} ∖ }UJđ

}
˘

“ cl
´

|cl UJ| ∖ |cl UJđ

|

¯

“ cl
´

ˇ

ˇcl UJ∖ cl UJđˇ
ˇ

¯

“

ˇ

ˇ

ˇ
cl
`

cl UJ∖ cl UJđ˘
ˇ

ˇ

ˇ

“
ˇ

ˇcl UJ´ cl UJđˇ
ˇ,

which shows that the regular closed tiles are closure of the Morse tiles obtained
in (2.18) and (3.14). The poset pT,ďq, which is isomorphic to pSC,ďq, is an exam-
ple of a regular closed Morse tessellation. The definition of a regular closed Morse
tessellation is similar to Definition 3.21: the tiles are regular closed and Condition
(i) is redundant. Given a regular closed Morse tessellation we can reconstruct a
Morse pre-order. If we start with a regular closed Morse tessellation pT,ďq, then
the Morse tiles T P T generate a subalgebra of regular closed sets R0pXq which in
turn generates a finite subalgebra of SetpXq represented by SetpXq for some finite
set X, cf. Prop. 2.28. The elements in X are again denoted by ξ and their realization
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in X is denoted by |ξ|. This way we obtain a discrete space X with two pre-orders:
(i) the face pre-order ď defined by ξ ď ξ1 if and only if |ξ| Ď cl|ξ1|, for which closed
sets in pX,ďq correspond to closed sets in the topological space pX,T q and (ii)
the Morse pre-order ď:, derived from the Morse tessellation, defined by ξ ď: ξ1

if and only if φ
`

t, |ξ|
˘

P int
§

đT for all t ą 0 for some T Ą |ξ1|. Closed sets in
pX,ď:q correspond to regular closed attracting blocks for the semi-flow φ, and
the partial equivalence classes of ď: retrieve the Morse tessellation partial order.
Summarizing, a regular closed Morse tessellation gives rise to a bi-topological CA-
discretization pX,ď,ď´‚ , | ¨ |q where ď´‚ “ě:.

REMARK 3.31. If we choose an arbitrary finite sublattice N Ă ABlockRpφq, then
N is a sublattice of some finite subalgebra R0pXq Ă RpXq. This induces a Boolean
CA-discretization by Proposition 2.28.

3.5. Beyond semi-flows

In this chapter the focus of applying bi-topological techniques is restricted to
semi-flows. However, most of the ideas and methods apply to a much wider class
of dynamical systems. In this section we outline some of these extensions and how
these fits into the theory of this chapter.

A relational semi-flow ϕ “ tϕtutPT` is a family of binary relations ϕt Ă X ˆ X

on a point set X parametrized by (time) t P T` such that

(i) ϕ0 “ id on X ;
(ii) ϕs ˝ ϕt “ ϕs`t for all4 s, t P T`.

The time space T` is either Z` or R`. For negative time we define ϕ´t to be the
opposite relation, i.e. ϕ´t “

␣

px, yq P X ˆ X | py, xq P ϕt
(

, cf. App. A. Therefore
Axiom (ii) is equivalent to

(ii)’ ϕs ˝ ϕt “ ϕs`t for all s ¨ t ě 0 with s, t P T,

where T is either Z or R. In Appendix A we discuss additional properties of binary
relations. If φpt, xq :“ ϕtpxq defines a continuous map T` ˆ X Ñ X then, if
T` “ R`, φ is called a continuous semi-flow onX which is the main point of focus in
this text. If T` “ Z` , ϕ is a called an iterated continuous map. In this case it suffices
to only consider the map f :“ ϕ1 since higher iterates are found via composition.
Backward images define ϕt for negative times. Most considerations in this chapter
are valid for relational semi-flows with T either discrete or continuous time. In
particular the techniques carry over to iterated maps. We will indicate in which
situations continuity will be required.

On the complete and atomic Boolean algebra SetpXq there is a natural duality
between binary relations and completely additive modal operators, cf. App. A. Let
Φ be a modal operator on SetpXq. Recall from Sect. 2.2 that specialization relation
is given by px, x1q P ϕ if and only if x P Φtx1u and the operator Φ “ ϕ´1 is defined

4For composition of relations and other properties cf. App. A.
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via (2.4). We apply this principle to a relational semi-flow by setting

px, x1q P ϕ´t if and only if x P ϕttx1u, t P T.

If we coarsen the relations by discarding time we obtain the relation

px, x1q P ϕ´t, for some t ą 0 if and only if x P Γ`tx1u :“
ď

tą0

ϕttx1u,

which is remeniscent of the operator Γ` defined in Section 3.1.1. A similar defi-
nition can be made for Γ´. Via Γ` and Γ´ one can define associated Alexandrov
topologies T ` and T ´ respectively. It makes sense to define finer topologies via
appropriately defined modal operators. For τ P T` define the topology Tτ by
declaring the sets U Ă X such that ϕτU Ă U to be closed. In particular we have
that

T ` Ă T `
τ Ă Tτ , τ ą 0,

and the same for τ ă 0. All these topologies are Alexandrov. The specialization
relation for Tτ is given by

px, x1q P ϕ´τ if and only if y P ϕτtxu.

The flow topologies discussed in Section 3.1.2 are not Alexandrov in general and
the associated duality is more involved. For example the block-flow topology T ´

‚

for a relational semi-flow is defined by considering the modal operator Γ´ as de-
fined above in the setting of relational semi-flows. Define the modal operator
Φ´‚ :“ Γ´cl for the topology T ´

‚ . Another interesting modal operator to consider
is defined as: Φτ

‚ “ ϕτcl.
Finally, even though Theorem 3.23 does not hold in general for relational semi-

flows one can also study regular closed attracting blocks for relational semi-flows,
cf. [44].





CHAPTER 4

Algebraization of dynamics

In this section, we elaborate on the third theme of this text: augmentation of
Morse pre-orders with algebraic topological data in order to characterize invari-
ance of the dynamics, i.e. the algebraization of dynamics. In particular, we use
techniques from algebraic topology in a way in that enables a computational the-
ory. The starting point is a discretization. A Morse pre-order pX,ď:q is the choice
of a pre-order such that the discretization map disc : pX,T ,T ´

‚ q ↠ pX,ď:q is both
T -consistent and T ´

‚ -co-consistent. In particular, the composed maps

pX,T q pX,ď:q pSC,ďq,
disc

tile

dyn
pX,T ´

‚ q pX,ě:q pSC˚,ěq
disc

tile

dyn

are continuous T0-discretizations, denoted by tile, which define SC-gradings on
X , cf. App. C.1. We explain how factorized gradings can be used to discretize
algebraic topological invariants of topological spaces. We apply these methods in
the context of space and flow topologies. Recall that the first theme was linking
topology and dynamics by formulating dynamics as a topology. It is worthwhile
to then ask of the reverse direction: what happens when topology is analyzed
as dynamics? The beginning of this chapter explores this direction, leading to a
construction we entitle tessellar homology, which, in contradistinction to cellular
homology, uses general tiles instead of CW-cells.

4.1. Cartan-Eilenberg systems

The notion of a Cartan-Eilenberg system over a (countable) total order was
first introduced in [11].This notion is generalized to arbitrary total orders in [35]
and to arbtrary posets in [48] and [63]. Here we use this concept for finite distribu-
tive lattices, cf. [63]. To some extend Cartan-Eilenberg systems may be regarded
as a type of generalized homology theory. These systems provide the right data
structure for considering algebraic topological invariance in combination with fil-
terings and discretizations of a space.

4.1.1. Cartan-Eilenberg systems over finite distributive lattices. Birkhoff’s
representation theorem, cf. Thm. B.2, yields that every finite distributive lattice
can be represented as the down-set lattice OpPq for some finite poset pP,ďq. Re-
gard OpPq as small (thin) category where the objects are the elements in the lattice
and the order relations α ď β (i.e. α Ă β) account for the morphisms, or arrows, i.e.

47
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α ď β yields the arrow α Ñ β. The arrow category of OpPq consists of pairs pα, βq,
with α ď β, and unique morphisms pα, βq Ñ pγ, δq for α ď γ and β ď δ, and is
denoted by OpPq

2 and corresponds to commutative diagrams in OpPq. Following
[35] we consider the covariant functors p0, p1 and p2 given by pα, β, γq

p0
ÞÝÝÑ pα, βq,

pα, β, γq
p1

ÞÝÝÑ pα, γq and pα, β, γq
p2

ÞÝÝÑ pβ, γq respectively, and natural transforma-
tions ı : p0 ñ p1 and ȷ : p1 ñ p2 whose components are given by pα, βq

ı
ÞÝÑ pα, γq

and pα, γq
ȷ

ÞÝÑ pβ, γq respectively.

DEFINITION 4.1 (cf. [63]). Let pP,ďq be a finite poset. A Cartan-Eilenberg sys-
tem over OpPq consists of a covariant functor E : OpPq

2
Ñ R-Mod1 and a natural

transformation k : Ep2 ñ Ep0 between the composite functors Ep2 and Ep0, called
the connecting homomorphism, such that

Ep0 Ep1

Ep2

Eı

Eȷk

is an exact triangle, where the natural transformations Eı and Eȷ are the right
whiskerings of E and ı, and E and ȷ respectively. A Cartan-Eilenberg system over
OpPq is denoted by E “

`

OpPq
2
,E, k

˘

.2

Unpacking the above definition yields

E : OpPq
2

ÝÑ R-Mod, pα, βq ÞÑ Epα, βq “ Eβ
α P R-Mod.

The functor E yields the homomorphisms ℓ : Eβ
α Ñ Eδ

γ for all pα, βq ď pγ, δq, and

the composition Eβ
α

ℓ
ÝÑ Eδ

γ
ℓ

ÝÑ Eζ
ϵ is given by ℓ : Eβ

α Ñ Eζ
ϵ by the transitivity in

OpPq. The natural transformation k yields the differential k : Eγ
β Ñ Eβ

α such that
the diagrams3

(4.1)

Eβ
α Eγ

α

Eγ
β

i

jk

Eγ
β Eβ

α

Eζ
ϵ Eϵ

δ

k

ℓ ℓ

k

are exact and commutative for all pα, β, γq ď pδ, ϵ, ζq. By construction ℓ : Eβ
α

ℓ
ÝÑ
id

Eβ
α

is the identity homomorphism and the exactness of (4.1)[left] shows that Eα
α “ 0

for all α P OpPq, cf. [35]. Morphisms between Cartan-Eilenberg systems E and E1

1The category of R-modules is denoted by R-Mod. Cartain-Eilenberg systems can be formulated
in any abelian category such as abelian groups, R-modules or K-vector spaces.

2Cartan-Eilenberg systems can be defined over any poset, eg. all subsets of a topological space,
closed subsets, etc., cf. [63].

3In the special cases pα, βq ď pα, γq and pα, γq ď pβ, γq the morphisms ℓ are denoted by i and j

respectively.
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can be described in terms of the E-terms, i.e. a morphism is a natural transfor-
mation h : E ñ E1 which, in terms of E-terms, implies that there exist homomor-
phisms hβα : Eβ

α Ñ E1βα which commute with the morphisms in E and E1 respec-
tively:

(4.2)

Eβ
α Eγ

α Eγ
β Eβ

α

E
1β
α E

1γ
α E

1γ
β E

1β
α

i

hβ
α

j

hγ
α

k

hγ
β hβ

α

i1 j1
k1

for every ordered triplepα, β, γq.
Since OpPq is a finite lattice it suffices to define a Cartan-Eilenberg system with

exact triangle and commutative squares for ordered pairs called an exact couple
system, cf. [48]. To be more specific we consider the diagrams:

(4.3)

Eα
∅ Eβ

∅

Eβ
α

i

jk

Eβ
α Eα

∅

Eδ
γ Eγ

∅

k

ℓ i

k

which are exact and commutative for all pα, βq ď pγ, δq. For an ordered triple

pα, β, γq the composition Eγ
β

k
ÝÑ Eβ

∅
j

ÝÑ Eβ
α defines the connecting homomorphism

(differential) kαβγ : E
γ
β Ñ Eβ

α . Since (4.3) is exact for pβ, γq P OpPq
2 we have that

kj “ 0 and thus kαβγkβγδ “ jpkjqk “ 0. Any ordered triple pα, β, γq yields the
following octahedral diagram:4

(4.4)

Eα
∅

Eβ
α Eγ

α

Eβ
∅ Eγ

β Eγ
∅

i i
k

l

k

lj

i

k

k̃

j

j

where the inner exact triangle (dashed) is induced by the three outer exact trian-
gles, cf. [48, Lem. 4.8].

THEOREM 4.2 (cf. [48], Lem. 4.8). An exact couple system over OpPq extends to a
Cartan-Eilenberg system over OpPq.

4If there is no ambiguity about the domain and codomain the sub-indices are omitted from the
maps k, i, j, ℓ and k̃.
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4.1.2. The excisive property. For most algebraic topological applications of
Cartan-Eilenberg systems the excisive property of homology plays an important
role which leads to the following definition.

DEFINITION 4.3. A Cartan-Eilenberg system E over OpPq is called excisive if

(4.5) Eβ
αXβ – EαYβ

α , @α, β P OpPq.5

Two ordered pairs pα, βq, pα1, β1q P OpPq
2 are equivalent, if β ∖ α “ β1 ∖ α1.

The excisive property for a Cartan-Eilenberg system implies that the E-terms only
depend on equivalent pairs up to isomorphism. For β∖α “ tpu we abuse notation
and write Ep :“ Eβ

α for all p P P.

LEMMA 4.4. Let pα, βq and pα1, β1q be equivalent pairs in OpPq
2. Then, Eβ

α – Eβ1

α1 .

PROOF. Define α̃ “ α _ α1 and β̃ “ β _ β1. Then, α, α1 ď α̃, β, β1 ď β̃ and
β ∖ α “ β1 ∖ α1 “ β̃ ∖ α̃. Consider α ď α̃ and β ď β̃. Then, pβ X β̃q ∖ pα Y α̃q “

β∖ α̃ “ β̃∖ α̃. Consequently, pβY α̃q∖ α̃ “ β̃∖ α̃ and therfore β̃ “ βY α̃. Similarly,
β ∖ pβ X α̃q “ β ∖ α which implies that α “ β ^ α̃. By (4.5) we conclude that
Eβ

α “ Eβ
α̃Xβ – Eα̃Yβ

α̃ “ Eβ̃
α̃, By the same token one proves that Eβ1

α1 “ Eβ1

α̃Xβ1 –

Eα̃Yβ1

α̃ “ Eβ̃
α̃, and thus Eβ

α – Eβ1

α1 . □

Excisive Cartan-Eilenberg systems already appear in the seminal work by Fran-
zosa on connection matrices for Morse representations, cf. [21]. In Franzosa’s work
such data structures of R-modules of K-vector spaces are referred to a module
braids. As a matter of fact one can prove that these concepts are equivalent.

THEOREM 4.5 (cf. [63]). A module braid over the convex sets in P is equivalent to
an excisive Cartan-Eilenberg system over OpPq.

An important result for excisive Cartan-Eilenberg systems is a representation
in terms of finitely generated differential modules. For convenience we assume
that the ring R is a principal ideal domain. Recall that P-graded differential module
is denoted by pC,dq, with C “

À

pPPGpC, cf. App. C.2-C.3. A P-graded differen-
tial module pC, dq is free if and only if the components GpC are free. Free graded
differential modules are used to construct representations of Cartan-Eilenberg sys-
tems. A P-graded differential module defines an OpPq-filtered differential module
via α ÞÑ FαC :“

À

pPαGpC, cf. App. C.2-C.3. In general, OpPq-filtered differen-
tial modules induce excisive Cartan-Eilenberg systems. Consider the short exact
sequence:

(4.6) 0 FαC FβC
FβC

FαC
0

i
Ă

j
, α ď β.

Since the differential d preserves the filtering we may define the homologiesEα
∅ :“

HpFαC,dq, Eβ
∅ :“ HpFβC, dq and Eβ

α :“ H
`

FβC{FαC, d
˘

. This yields the exact

5The homomorphism ℓ : Eβ
αXβ Ñ EαYβ

α is an isomorphism.
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triangles in (4.3) where k : H
`

FβC{FαC,d
˘

Ñ HpFαC, dq is the connecting homo-
morphism constructed in the usual way. All other axioms of exact couple systems
are readily verified which yields a Cartan-Eilenberg system denoted EpC, dq. The
excisive property follows from the fact that FαYβC{FαC “ pFαC ` FβCq{FαC –

FβC{pFαC X FβCq “ Fβ{FαXβC. The (excisive) Cartan-Eilenberg system EpC,dq

is the Cartan-Eilenberg system of the OpPq-filtered differential module pC, dq. This
implies that a Cartan-Eilenberg system of a P-graded differential module is auto-
matically defined.

DEFINITION 4.6. Let E be a Cartan-Eilenberg system over a finite distributive
lattice OpPq. A free, P-graded differential group pC, dq, with C “

À

pPPGpC, is a
P-graded representation for E if

(4.7) EpC, dq – E.

A P-graded representation is strict if the free P-graded differential group pC,dq is
strict.6

The main theorem of this section states that in most cases P-graded represen-
tations for Cartan-Eilenberg systems exist and are unique up to conjugacy. The
existence part was proved in [21] and applies to Cartan-Eilenberg systems due to
Theorem 4.5. The existence result in [21] assumes that every E-term is the homol-
ogy of a differential module. We say in this case that the Cartan-Eilenberg system
is chain generated. To be more precise, for all pα, βq P OpPq

2 there exist differential
modules

`

Cα
∅, d

α
∅
˘

,
`

Cβ
∅, d

β
∅
˘

and
`

Cβ
α , d

β
α

˘

, and short exact sequences

0 Cα
∅ Cβ

∅ Cβ
α 0,

i j

such that Eα
∅ “ H

`

Cα
∅, d

α
∅
˘

, Eβ
∅ “ H

`

Cβ
∅, d

β
∅
˘

and Eβ
α “ H

`

Cβ
α , d

β
α

˘

. By the
standard construction of the connecting homomorphisms this yields a Cartan-
Eilenberg system E. This concept is more general than a Cartan-Eilenberg sys-
tem generated by an OpPq-filtered differential module, or a P-graded differential
module, cf. [63].

THEOREM 4.7 ([21], Thm. 4.8). Let E be a chain generated, excisive Cartan-Eilenberg
system over OpPq. Then, there exists a free, P-graded differential group pC,dq — a P-
graded representation — such that E – EpC,dq.

An R-module is finitely generated if it has a finite generating set. The running
assumption in this chapter is thatR is a principal ideal domain. This implies that a
module C – Rn ‘TorpCq, where TorpCq is the maximal torsion submodule of C7 and
TorpCq –

À

iR{pdiq, where di are the non-zero invariant factors of C. The integer
n is called the rank of C. A Cartan-Eilenberg system E is finitely generated if all

6Recall that pC,dq is strict if the differential restricted to GpC, p P P, is trivial, cf. Defn. C.3.
7Recall that c P TorpCq if the exists an r P R such that rc “ 0.
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modules Eβ
α , pα, βq P OpPq

2. Suppose E is a finitely generated, excisive Cartan-
Eilenberg system over OpPq. For Eβ

α let sβα be the rank of Eβ
α and rβα is the number

of non-zero invariant factors of the maximal torsion submodule TorpEβ
αq. For β ∖

α “ tpu we denote sβα and rβα by sp and rp respectively.

DEFINITION 4.8. Let E be a finitely generated, excisive Cartan-Eilenberg sys-
tem over a finite distributive lattice OpPq. A free, P-graded differential module
pC,dq, with C “

À

pPPGpC, is a principal representation for E if

(i) EpC,dq – E;
(ii) rankGpC “ sp ` 2rp for all p P P.

The differential d is called a spectral matrix for E.

Since R-modules over a principal ideal domain allow length 1 free resolutions
the existence of a principal representation is guaranteed by Theorem 4.7. The main
result in [63] states that such a representation is unique up to isomorphism of
Cartan-Eilenberg systems which implies that differentials (spectral matrices) are
unique up to conjugacy.

REMARK 4.9. For strict P-graded differential modules the homology satisfies
HpGpC,dq “ GpC – Eβ

α , with β ∖ α “ tpu for all p P P.

REMARK 4.10. In the context of dynamical systems a spectral matrix is referred
to as a connection matrix. We will refer to this nomenclature when we apply Cartan-
Eilenberg systems for bi-topological spaces involving the block-flow topology.

REMARK 4.11. If a Cartan-Eilenberg system is generated by an OpPq-filtered
differential K-vector space, then [58] provides a simplified proof of Theorem 4.7.

4.1.3. Cartan-Eilenberg systems of a filtered topological space. As before let
pP,ďq be a finite poset and pX,T q be a topological space. Consider a P-graded
decomposition of X given by X “

Ť

pPPGpX , cf. App. C.1. Dual to a grad-
ing is a lattice filtering grd´1 : OpPq Ñ SetpXq given by the lattice homomor-
phism α ÞÑ FαX :“ grd´1α.8 From this point on one can invoke a (generalized)
(co)homology theory by assigning Eβ

α :“ HpFβX,FαXq for every pα, βq P OpPq
2.

From the Eilenberg-Steenrod axioms we have exact triangles (and the connecting
homomorphisms) and commutative squares:

HpFαXq HpFβXq

HpFβX,FαXq

i

jk

HpFβX,FαXq HpFαXq

HpFδX,FγXq HpFγXq

k

ℓ i

k

8If pP,ďq is T -consistent then tile is a continuous map, and grd´1 : OpPq Ñ C pX,T q is filtering
of closed set of X . The mapping grd´1 : UpPq Ñ OpX,T q yields a filtering of open sets in X . This can
also be obtained by considering a T -co-consistent grading, i.e. continuous with respect to opposite
poset P˚.
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for pα, βq ď pγ, δq. For example the homology functor can be taken to be singular
homology. Note that we suppress the Z-grading as the Cartan-Eilenberg theory
works in the setting of differential modules. Singular homology yields a chain
generated Cartan-Eilenberg system Esing

pXq. Denote by CpXq the R-module of
singular chains over a ring R and d: CpXq Ñ CpXq is the singular boundary
operator, or differential making

`

CpXq,d
˘

a differential module.9 The filtering of
X yields a filtering of CpXq, i.e. α ÞÑ FαCpXq with FαCpXq :“ C

`

FαX
˘

, where
C
`

FαX
˘

are the singular chains in CpXq restricted to FαX . For singular chains
it holds that FαXβCpXq “ FαCpXq X FβCpXq. The same relation with respect
to union does not hold in general. The differential satisfies dFαCpXq Ă FαCpXq

for all α P OpPq, making α ÞÑ FαCpXq a meet semi-lattice filtered module (chain
complex). The fact that the latter is not an OpPq-filtered module prevents us from
regarding Esing

pXq as generated by an OpPq-filtered differential module. However,
for the filtering we obtain the following short exact sequences:

0 CpFαXq CpFβXq
CpFβXq

CpFαXq
0,

i j

pα, βq P OpPq
2, which represent the modules Cα

∅, Cβ
∅ and Cβ

α . The associated
homologies HpFαXq “ H

`

CpFαXq,d
˘

, HpFβXq “ H
`

CpFβXq,d
˘

and

HpFβX,FαXq “ H
`

CpFβXq{CpFαXq,d
˘

,

yield the above exact triangle for a pair. We conclude that Esing
pXq is chain gen-

erated as explained in Section 4.1.2. The fact that pCpXq,dq is not lattice filtered
implies that the associated Cartan-Eilenberg system is not excisive in general. De-
pending on the homology theory, or on properties of the grading of X , we can
relate the homologies HpFβX,FαXq and H

`

FβX{FαX
˘

which are not necessarily
isomorphic. If a grading X “

Ť

pPPGpX is natural then the associated filtering
α ÞÑ FαX consists of mutually good pairs, cf. Defn. 2.17. For example if we con-
sider singular homology thenHpFβX,FαXq – H

`

FβX{FαX
˘

for all α Ă β, cf. [34,
Prop. 2.22], [69, Thm. 3.2.9]. In this case the relative singular homology satisfies the
excisive property, i.e. HpFαYβX,FαXq – H

`

FαYβX{FαX
˘

– H
`

FβX{FαXβX
˘

–

HpFβX,FαXβXq, for all α, β P OpPq. If X is a compact Hausdorff space and the
poset P is T -consistent (not necessarily natural), i.e. the filtering consists of closed
sets FαX P C pX,T q. By the closedness of FαX we have the homeomorphisms
FβX{FαX ∖ rFαXs – FβX ∖ FαX , for all α Ă β. Let H̄ represent Alexander-
Spanier cohomology. From the excisive property of Alexander-Spanier cohomology
we have that10

H̄
`

FβX,FαX
˘

– H̄c

`

FβX ∖ FαX
˘

– H̄c

`

FβX{FαX ∖ rFαXs
˘

– H̄
`

FβX{FαX, rFαXs
˘

“: H̄
`

FβX{FαX
˘

,

9If we invoke CpXq “
À

q CqpXq as the Z-graded module of singular chains then pC,dq is a

chain complex.
10Here H̄c denote compactly supported Alexander-Spanier cohomology.
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cf. [62, Ch. 6, Sect. 6, Lem. 11], [16, Ch. V, Sect. 2.A]. The same result can be obtained
by using compactly supported Alexander-Spanier homology, cf. [47, Cor. 9.4].

REMARK 4.12. Suppose X is a (locally) compact Hausdorff space homeomor-
phic to a finite CW-complex and the poset P is T -consistent such that FαX is
homeomorphic to a closed subcomplex. Then, FβX{FαX is the one-point com-
pactification of Gβ∖αX :“ FβX ∖ FαX . For the singular homology we have the
isomorphism H

`

FβX{FαX
˘

– HBM
`

Gβ∖αX
˘

, where HBM indicates the Borel-
Moore homology ofGβ∖αX , cf. [8]. As a matter of fact the Borel-Moore chain groups
CBM

`

FβX ∖ FαXq yield a short exact sequences

(4.8) 0 Ñ CBM
`

FβX ∖ FαX
˘ i

ÝÑ CBM
`

FγX ∖ FαX
˘ j

ÝÑ CBM
`

FγX ∖ FβX
˘

Ñ 0,

as opposed to the weakly exact sequences in (4.9).

REMARK 4.13. In [21, 19] considers the sequence of pointed quotient spaces
FβX{FαX which induces the weakly exact sequence11

(4.9) CpFαXq CpFβXq C
`

FβX{FαX
˘i j

of singular chains on the quotient spaces for good pairs. The approach in [19]
allows slightly weaker conditions on the good pairs, cf. [46].

4.2. Tessellar homology

The objective of the homological algebra in this section is to obtain algebraic
topological invariants of X via finite algebraic information; discretization of alge-
braic topology. To do so we employ the abstract formalism of Cartan-Eilenberg
systems as explained in Section 4.1. Let disc : pX,T q ↠ pX,ďq be a natural dis-
cretization map, i.e. ď is a T -consistent pre-order and consist of mutually good
pairs. Let X{„ be the poset of partial equivalence classes of pX,ďq. Then, the map
X ↠ X{„ given by the composition

(4.10) X X X{„,
disc π

is natural and yields a X{„-grading X “
Ť

rξsGrξsX , cf. Rem. 2.10 and App. C.1.
The associated filteringU ÞÑ FUX ,U P OpX,ďq, defined by disc´1, consists of good
pairs and yields an excisive Cartan-Eilenberg system Edisc as outlined in Section
4.1.3. For simplicity we assume that Edisc is finitely generated for the remainder of
this chapter. We now explain the construction of an associated homology theory.

11Weakly exact sequences yield exact triangles homology. Recall that a seqeunce A
i

ÝÑ B
j

ÝÑ C

is weakly exact is i is injective, j ˝ i “ 0 and the quatient map B{im i Ñ C induced by j yields an
isomorphism HpB{im jq – HpCq, cf. [46] and [21] for more detail.
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4.2.1. The tessellar differential module. For ξ P X define the E-terms for
Edisc via relative (singular) homology Erξs :“ H

`

FÓξX,FÓξđX
˘

, which is chain
generated and finitely generated with coefficients in a principal ideal domain R. The
tessellar modules, or tessellar chain groups are given by the external direct sum

(4.11) CdiscpXq :“
à

rξsPX{„

GrξsC
discpXq,

where GrξsCdiscpXq :“ H
`

FÓξX,FÓξđX
˘12 if the latter is a free R-module, or else

choose a free differential module
`

GrξsC
discpXq,d

˘

such that

(i) H
`

GrξsC
disc,d

˘

– H
`

FÓξX,FÓξđX
˘

;
(ii) GrξsCdiscpXq – Rsξ`2rξ , cf. Defn. 4.8(ii).

By Theorem 4.7 there exists an OpXq-filtered differential

ddisc : CdiscpXq Ñ CdiscpXq

such that E
`

Cdisc,ddisc
˘

– Edisc and the spectral matrix ddisc is unique up to iso-
morphism, cf. Sect. 4.1.2. If the homologies H

`

FÓξX,FÓξđX
˘

are free (finitely gen-
erated), then

`

Cdisc,ddisc
˘

is a strict X{„-graded differential module with CdiscpXq

“
À

rξsPX{„
H
`

FÓξX,FÓξđX
˘

. We refer to
`

Cdisc,ddisc
˘

as the X{„-graded tessellar
differential module, or X{„-graded tessellar chain complex based on singular homol-
ogy. The associated homology is called the tessellar homology of disc : X ↠ X and
is denoted by HdiscpXq – HpXq. Following Appendix C.2 the restricted module
GU∖U1CdiscpXq is well-defined for every convex set U ∖ U1, with U,U1 P OpX,ďq

and

(4.12) GU∖U1CdiscpXq :“
à

rξsĂU∖U1

GrξsC
disc “

FUC
disc

FU1Cdisc
.

The differential is the restriction of dtess to GU∖U1CtesspXq. The associated homol-
ogy HdiscpGU∖U1Xq :“ H

`

GU∖U1CdiscpXq,ddisc
˘

is the tessellar homology of the
locally closed set13 GU∖U1X . The latter also defines the relative tessellar homology
Hdisc

`

FUX,FU1X
˘

.

THEOREM 4.14. Let disc : X ↠ X be a natural discretization map. Then, the tessel-
lar homology satisfies HdiscpXq – HpXq. In particular, for every convex set U∖U1 Ă X,
U,U1 P OpX,ďq, we have that HdiscpGU∖U1Xq – HpFUX,FU1Xq.

PROOF. By definition the modules GrξsCdisc are free. By [21, Thm. 4.8] we
have a differential ddisc which retrieves the homologies. □

The discretization map disc : X ↠ X discretizes X , while the construction of
`

CdiscpXq,ddisc
˘

discretizes the algebraic topology of X . More details on tessellar
homology are discussed in [63].

12By the isomorphism OpX{„q – OpX,ďq we have that
§

đξ “
§

đrξs.
13A locally closed subset of X is given as the intersection an open and a closed subset in X .
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4.2.2. The tessellar complex. It it sometimes useful to describe the tessellar
homology in combinatorial terms. To do some we define a slight generalization of
a (Lefschetz) complex, cf. [31].

DEFINITION 4.15. A complex is a triple pT,ď, κq where pT,ďq is a finite pre-order
and κ : T ˆ T Ñ R is a function satisfying

(i) (upper-triangular) κpϑ, ϑ1q ‰ 0 implies ϑ ď ϑ1, ϑ ‰ ϑ1;
(ii) (boundary)

ř

ϑ1 κpϑ, ϑ1qκpϑ1, ϑ2q “ 0.

The function κ is called the incidence function and its values in the ring R are called
the incidence numbers.

For a cell complex we can define (free) canonical differentialR-module. Define
the free R-module over T:

CpT q :“
à

ϑPT
Rxϑy

14

with differential
dT xϑy :“

ÿ

ϑ1PT
κpϑ, ϑ1qxϑ1y,

which makes
`

CpT q,dT
˘

a T {„-graded differential R-module. For every convex
set C Ă T the restriction of CpT q to CpCq and differential accordingly defines a
subcomplex

`

CpCq,dC
˘

. The associated Cartan-Eilenberg system is excisive and is
denoted by E

`

CpT q,dT
˘

withE-terms given byEβ
α :“ H

`

CpCq,dC
˘

, with β∖α “ C.
Consider the diagram

(4.13)
X X X{„

T

disc π

ϖ

which implies that the equivalence classes in T coincide with the equivalence
classes in X, i.e. T {„ – X{„.

DEFINITION 4.16. A triple pT,ď, κq is tessellar complex for a natural discretiza-
tion map disc : X ↠ X if if

`

CpT q,dT
˘

–
`

Cdisc,ddisc
˘

,

as OpXq-filtered chain isomorphic X{„-graded differential modules.

A tessellar complex yields a differential matrix with R-coefficients via the in-
cidence function κ. This justifies the terminology spectral matrix. For a convex set
C Ă X we use the notation

(4.14) HdiscpGU∖U1Xq – H
`

CpC q,dC
˘

– HpFUX,FU1Xq,

with C “ U ∖ U1 is independent of the pair U1 Ă U and where
`

CpCq,dC
˘

is re-
striction of

`

CpT q,dT
˘

to C. In Section 4.3 we discuss the special case of a CW-
decomposition.

14We use the notation xϑy to express ϑ as basis for CpT q.
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REMARK 4.17. Given a natural discretization map disc : X ↠ X one can al-
ways construct a map disc : X Ñ X (not necessarily surjective) such that there
exists a tessellar complex pX,ď, κq. Such a discretrization map is a representable
natural discretization.

4.2.3. Linear discretization, split grading and bi-graded Betti numbers. In
certain cases a natural discretization map disc : X ↠ X allows another scalar dis-
cretization map via an order-preserving map ind: X Ñ Z (not necessarily surjec-
tive). By construction ind factors through X{„:

X X X{„ Zdisc

skel

π

ind

The map ind maps to a linear order and the composition skel is called a linear
discretization. The discretization ind is a coarsening of disc and is therefore a natu-
ral discretization map, which makes

`

Cdisc,ddiscq a Z-graded differential module.
Since ind is order preserving the tessellar homology of GpX :“ skel´1p Ă X is
well-defined. For the latter we consider a standard spectral sequence. Define,
using (4.12),

GpC
discpXq “

à

rξsĂind´1p

GrξsC
discpXq,

which gives the Z-grading CdiscpXq “
À

pPZGpC
tesspXq. As explained in Section

4.1.2 we obtain the short exact sequences

0 FÓpp´1qC
disc FÓpC

disc GpC
disc 0

ip´1 jp

From the tessellar boundary operator ddisc we compute the homology which pro-
vide the zeroth and first pages E 0 “

À

p E 0
p and E 1 “

À

p E 1
p with

E 0
p “ GpC

discpXq and E 1
p “ H

`

GpC
disc

˘

– Hdisc
`

GpX
˘

.

This yields the exact triangles, using HdiscpFÓpXq “ H
`

FÓpC
disc

˘

,

(4.15)

HdiscpFÓpp´1qXq HdiscpFÓpXq HdiscpFÓpp`1qXq

E 1
p E 1

p`1

ip´1 ip

jp jp`1kp
kp`1

d1
p`1

where d1p “ jp´1kp are the connecting homomorphisms computed from ddisc.
Recursively define E r`1 “ HpE r,drq where drp : E r

p Ñ E r
p´r with dr “ ji1´rk.

Since ind defines a finite filtering on CdiscpXq the spectral sequence converges and
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E8p – GpHpCdiscq “ GpH
discpXq. If we set βdisc

p “ rankGpH
discpXq, called the

Betti numbers, then
ÿ

pPZ
βdisc
p “ rankHdiscpXq.

In particular, when R “ K, then ind yields a grading on the tessellar homology.
For ring coefficients this is more complicated and it is not true in general that
GrHdiscpXq “

À

pPPGpH
discpXq is isomorphic to HdiscpXq, cf. App. C.2. How-

ever, if the differential satisfies ddiscGpC
disc Ă Gp´1C

disc, then the tessellar dif-
ferential module

`

Cdisc,ddiscq, with ddiscp :“ ddiscpp, p ´ 1q, 15 is a chain complex
`

GpC
disc,ddiscp q. We write ddisc “

À

pPP d
disc
p . In this case the linear discretization

ind is said to be split grading for the tessellar differential module and ind induces
a Z-grading on the associated tessellar homology. The Z-grading given by ind

can be useful is some cases e.g. cellular homology and the treatment of tessellar
homology for Morse pre-orders, cf. Sect.’s 4.3 – 4.4.

The advantage of using Betti numbers is that one can treat the Z-grading given
by ind as a grading on the Betti numbers. We start with using the Z-grading on
singular homology: HdiscpXq “

À

qPZH
disc
q pXq. Define the bi-graded Betti num-

bers as: βdisc
p,q “ rankGpH

disc
q pXq. The double tessellar Poincaré polynomial of X is

defined as

(4.16) P disc
λ,µ pXq “

ÿ

p,qPZ
βdisc
p,q λ

pµq.

The latter satisfies a variation on the standard Morse relations. Define βdisc
p,q pξq “

rankGpH
disc
q pGrξsXq and associated Poincaré polynomial

P disc
λ,µ

`

GrξsX
˘

“
ÿ

p,qPZ
βdisc
p,q pξqλpµq.

The singular homology grading yields the splitting drp “
À

qPZ d
r
p,q .

THEOREM 4.18 (Bi-graded Morse relations). LetX
disc

ÝÝÝÝ↠ X ind
ÝÝÑ Z be a natural

linear discretization. Then,

(4.17)
ÿ

rξsĂX
P disc
λ,µ

`

GrξsX
˘

“ P disc
λ,µ pXq `

8
ÿ

r“1

p1 ` λrµqQr
λ,µ,

where Qr
λ,µ “

ř

p,qPZprank im drp`r,q`1qλpµq ě 0. The sum over r is finite.

PROOF. In terms of the spectral sequences we have that E 0 “
À

p,qPZ E 0
p,q and

E 1 “
À

p,qPZ E 1
p,q are isomorphic. For the spectral sequence we have the short

exact sequences

0 ÝÑ ker drp,q ÝÑ E r
p,q ÝÑ im drp,q ÝÑ 0, and

0 ÝÑ im drp`r,q`1 ÝÑ ker drp,q ÝÑ E r`1
p,q ÝÑ 0.

15In Appendix C.2 the entries of d are explained.
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the implies the relation

rank E r
p,q “ rank E r`1

p,q ` rank im drp,q ` rank im drp`r,q`1.

Define the double Poincaré polynomials Pλ,µpE rq :“
ř

p,qPZprank E r
p,qqλpµq and

Qr
λ,µ “

ř

p,qPZprank im drp`r,q`1qλpµq . Then, the Poincaré polynomials satisfy
Pλ,µpE rq “ Pλ,µpE r`1q ` p1`λrµqQr

λ,µ. Iterating the above identities for Pλ,µpE rq

and using the fact that the spectral sequence converges yields Equation (4.17). □

Using bi-graded tessellar Betti numbers will prove to be very useful in setting
up a more refined theory of spectral matrices. In Sect. 5.4.2 we exploit this idea in
the setting of parabolic flows. This approach is reminiscent of the detailed connec-
tion matrix in [4]. If we again ignore the natural grading of singular homology the
Morse relations will be

(4.18)
ÿ

rξsĂX
P disc
λ

`

GrξsX
˘

“ P disc
λ pXq `

8
ÿ

r“1

p1 ` λrqQr
λ,

which is obtained by setting µ “ 1. Note that the property for ind to be split
grading is that Qr

λ “ 0 for r ě 2. The maximal value for r in (4.18) can be utilized
to further coarsen ind in order to obtain a linear discretization that is split grading.

REMARK 4.19. A similar procedure to bi-graded tessellar Betti numbers can
be followed for the X{„-grading by using spectral systems, cf. [48].

REMARK 4.20. We do not refer to CdiscpXq “
À

pPZGpC
discpXq as the skeletal

differential module since it is a coarsening of the tessellar differential module. The
differential is obtained by coarsening the information. This issue comes up again
in the next section.

4.3. Cellular homology

Let X be a finite CW-complex, i.e. a compact Hausdorff space that admits a
CW-decomposition map cell : X ↠ X, where pX,ďq is the poset of CW-cells with
the face partial order. The cellular differential module, or cellular chain complex, de-
noted Ccell, is constructed according to the theory in Section 4.2. This coincides
with the classical construction, as we outline below.

From the definition of CW-decomposition we have the composition

X X Ncell

skel

dim

which is a coarsening of the discretization cell. Since dim is order-preserving and
since cell is a natural discretization, the composite discretization skel is natural
and linear and thus continuous. Therefore skel defines a T -consistent (not sur-
jective) linear discretization of X . In the traditional set-up the cellular homology
of X is defined in terms of the natural discretization map skel. As before define
the filtering

§

đp ÞÑ skel´1
§

đp “: FÓpX with skeletal chain complex CskelpXq :“
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À

pPNH
`

FÓpX,FÓpp´1qX
˘

.16 The sets GpX “ FÓpX ∖ FÓpp´1qX are a disjoint
union of p-cells |ξ| in X and the homology is given by H

`

FÓpX,FÓpp´1qX
˘

–
À

ξPGpXRxξy, where GpX “ dim´1 p and R is a principal ideal domain. Since the
homologies H

`

FÓpX,FÓpp´1qX
˘

are free Theorem 4.7 yields a differential (strict
spectral matrix) dskel : CskelpXq Ñ CskelpXq such that HskelpXq – HpXq. We will
explain this construction now in a more detailed way.

REMARK 4.21. The above construction is the traditional way of constructing
cellular homology for a finite CW-complex X . The N-grading is special in the
sense that if H is the singular homology functor and dim plays the role in ind

in Sect. 4.2.3, then GpHqpXq ‰ 0 if and only if p “ q. Since all components are
homeomorphic the skeletal chain complex is given by Cskel

q pXq “
À

dimpξq“q Rxξy

with boundary operator dskelq with dskel “
À

dskelq . The linear discretization skel

is split grading. Even though skel is natural this condition is not needed since the
order is linear.

A more detailed way to treat the cellular complex is to use the face partial
order pX,ďq. As in the more general tessellar case we define the cellular chain
complex17 by

CcellpXq “
à

ξPX
GξC

cellpXq, GξC
cellpXq “ H

`

FÓξX,FÓξđX
˘

– HBMpGξXq, 18

whereGξX “ |ξ| and its Borel-Moore homology ofGξX is given byHBMpGξXq –

R. The module Ccell is a special case of the tessellar module for the discretization
map cell. The filtering U ÞÑ FUX , U P OpX,ďq, defined by cell´1, consists of
good pairs and yields a chain generated, excisive Cartan-Eilenberg system Ecell

as outlined in Sections 4.1.3 and 4.2. Since GξC
cellpXq – R the system Ecell is

finitely generated. We follow the procedure of Section 4.2. Theorem 4.7 yields the
existence of (strict)

dcell : CcellpXq Ñ CcellpXq,

such that E
`

Ccell,dcell
˘

– Ecell. In particular, HcellpXq – HpXq and

(4.19) HcellpGU∖U1Xq – HpFUX,FU1Xq – HBMpGU∖U1Xq, 19

for all U,U1 P OpX,ďq, U1 Ă U. The pair
`

Ccell,dcell
˘

is the cellular chain com-
plex. For the differential dcell we express the strict upper-triangular structure by
dcellpξ, ξ1q : Gξ1Ccell Ñ GξC

cell and dcellpξ, ξ1q ‰ 0 implies that ξ ă ξ1. The follow-
ing lemma follows from choice of singular homology in the definition of Ecell.

LEMMA 4.22. If dcellpξ, ξ1q ‰ 0, then ξ1 covers ξ.20

16By Remark 4.12 we also have H
`

FÓpX,FÓpp´1qX
˘

– HBMpGpXq.
17Even though we do not utilize the Z-grading of singular homology we refer to Ccell as chain

complex as opposed to differential module since the construction is based on the singular chain
complex.

18Here
§

đξđ :“
`§

đξ
˘đ denotes the immediate predecessor of

§

đξ.
19For latter isomorphism on Borel-Moore homology, cf. [28, 9].
20In a finite partial order ξ covers ξ if ξ ă ξ1 and rξ, ξ1s “ tξ, ξ1u. The pair tξ, ξ1u is a covering pair.
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PROOF. For the singular chain complex the connecting homomorphism kq in

HqpFÓξđXq HqpFÓξXq HqpFÓξX,FÓξđXq Hq´1pFÓξđXq
iq jq kq

is degree ´1 which implies that dcell is also degree ´1 with respect to the Z-grading
of singular homology, i.e. dcellpξ, ξ1q “

À

dcellq pξ, ξ1q and dcellq pξ, ξ1q : Gξ1Ccell
q Ñ

GξC
cell
q´1, cf. [21]. For the cellular chain groups it holds that

GξC
cell
q pXq “ Hq

`

FÓξX,FÓξđX
˘

–

#

R if q “ dim ξ;

0 if q ‰ dim ξ,

Therefore, dcellq pξ, ξ1q “ 0 unless dim ξ1 “ q and dim ξ “ q ´ 1. □

In contrast to the general construction of Section 4.2, all of the nonzero entries
dcellpξ, ξ1q are determined by the octahedral diagrams, i.e. the rolled out middle
triangle in (4.4) (homology braid). Indeed, for a covering pair ξ ă ξ1, with dim ξ1 “

q, we choose a triple of down-sets (closed sets)
§

đξ1đ ∖ ξ Ă
§

đξ1đ Ă
§

đξ1,

which yields dcellq pξ, ξ1q : Gξ1Ccell
q Ñ GξC

cell
q´1 given by the composition21

(4.20) Hq

`

FÓξ1X,FÓξ1đX
˘

Hq´1

`

FÓξ1đX
˘

Hq´1

`

FÓξ1đX,FÓξ1đ∖ξX
˘

.
kq

where Gξ1Ccell
q “ Hq

`

FÓξ1X,FÓξ1đX
˘

and GξC
cell
q´1 “ Hq´1

`

FÓξ1đX,FÓξ1đ∖ξX
˘

. By
the excisive property this construction is independent of the triple U Ă U1 Ă U2
with ξ “ U1 ∖ U and ξ1 “ U2 ∖ U1.

Per Section 4.2.3 we consider the order-preserving map dim: X Ñ N which
plays the role of ind in order to obtain an N-grading of Hcell. For the composition
skel the sets GpX :“ skel´1p are convex. By Lemma 4.22 the differential dcell acts
on GpC

cellpXq as

dcell : GpC
cell
p pXq Ñ GpC

cell
p´1pXq.

If we write the restriction toGpC
cellpXq as dcellp then

`

GpC
cell,dcellp

˘

is a chain com-
plex and dim is split grading for cellular homology. As a consequence dim yields
the natural N-grading of cellular homology.

REMARK 4.23. As in Section 4.2.2 we can define the standard Lefschetz com-
plex and incidence numbers from the cellular homology.

REMARK 4.24. For the spectral sequence in Theorem 4.18 for dim we have that
drp,q “ 0 for r ě 2 and therefore Qr

λ,µ “ 0 for r ě 2. Moreover, all homologies
E r
p,q “ 0 for p ‰ q and r ď 2. For the Morse relations this implies

PλµpCcellq “ Pλ,µpCcellq “ P cell
λ,µ pXq ` p1 ` λµqQ1

λ,µ “ P cell
λµ pXq ` p1 ` λµqQ1

λµ.

21In Franzosa’s connection matrix theory these entries are called flow defined.
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Moreover, PλµpCcellq “
ř

ξPX P
cell
λµ pξq, with P cell

λµ pξq “ pλµqq and q “ dim ξ. This
yields

ÿ

ξPX
pλµqdim ξ “ P cell

λµ pXq ` p1 ` λµqQ1
λµ,

which retrieve the standard Morse relations. The latter also follows if we use the
fact that

`

Ccell,dcell
˘

is a chain complex.

4.4. Composite gradings and the homology for Morse pre-orders

The most important objective in chapter is to build an homology theory for
the discretization map tile : X Ñ SC. In the first sections of this chapter we uti-
lized Cartan-Eilenberg systems to discretize the algebraic topological information
for arbitrary topological spaces. In this section we outline how discretization can
be employed in a bi-topological setting. The objective is to use the factorization
so that we can discretize two topologies: the space topology and the block-flow
topology. To do so one can factor the two topologies in pX,T ,T ´

‚ q in different
ways. For example pX,T q Ñ pX,ďq Ñ pX,ď:q Ñ pSC,ďq, or pX,T ´

‚ q Ñ pX,ď´‚
q 99K pX,ď:q Ñ pSC,ďq, cf. Diagram (2.19). One can also invoke to the topology
T : in this setting. In a more general setting the bi-topological discretization of
algebraic invariants can be organized via the following diagram continuous maps

pX,T ,T 1q pX,ď:q pP,ďq,

disc

disc

part

where pX,T ,T 1q is a bi-topological space, pX,ď:q an antagonistic pre-order and
pP,ďq a finite poset. The factorization via pX,ďq and pX,ď1q is given by Diagram
(2.19). Recall,

pX,ďq

pX,T ,T 1q pX,ď:q pP,ďq

pX,ď1q

id
part

disc

disc

disc

disc

part

id
part

We illustrate the discretization by considering one of the two topologies and the
associated factorization:

(4.21) pX,T q pX,ďq pX{„,ďq pP,ďq
disc

tile

π

part

ϖ
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As before the discretization map tile yields a chain-generated Cartan-Eilenberg
system Etile, cf. Sect. 4.1.3 and Sect. 4.2.1. Under the assumption that disc is natural
and yields finitely generated tessellar homology the same applies to Etile. Define,
using the singular chain complex for pX,T q,

(4.22) CtilepXq :“
à

pPP

GpC
tilepXq,

where GpC
tilepXq :“ H

`

FÓpX,FÓpđX
˘

if the latter is a free R-module, or else
choose a free differential module

`

GpC
tilepXq,d

˘

such that

(i) H
`

GpC
tile,d

˘

– H
`

FÓpX,FÓpđX
˘

;
(ii) GpC

tilepXq – Rsp`2rp , cf. Defn. 4.8(ii).

By Theorem 4.7 there exists an OpPq-filtered differential

dtile : CtilepXq Ñ CtilepXq

such that E
`

Ctile,dtile
˘

– Etile, cf. Sect. 4.1.2. In particular, HtilepXq – HpX,T q.
The tessellar homology Htile can also be defined for pX,T 1q and for pX,T :q.
These are different invariants for the discretization tile : pX,T ,T 1q Ñ pP,ďq.
Since disc : pX,T q Ñ pX,ďq is a natural discretization map we can utile the tes-
sellar homology of disc. Consider the Cartain-Eilenberg system Etile where the E-
terms are defined using the tessellar homology Hdisc which isomorphic to the sin-
gular homology, i.e. HdiscpGpXq – H

`

FÓpX,FÓpđX
˘

. The tessellar homology for
disc is defined via aX{„-graded tessellar moduleCdiscpXq “

À

rξsPX{„
GrξsC

discpXq.
Convex sets in P are convex sets in X and we define GpC

tilepXq as HdiscpGpXq is
the latter is free. Otherwise choose GpC

tilepXq as explained above. In the case of
field coefficient in K the homology Hdisc is free and there exists a strict P-graded
differential module

`

CdiscpXq,ddisc
˘

, cf. Theorem 4.7 and cf. [58].

REMARK 4.25. In the case we use field coefficients R “ K the algorithm CON-
NECTIONMATRIX [31, Algorithm 6.8], which is based on algebraic-discrete Morse
theory, takes as input

`

CdiscpXq,ddisc
˘

and outputs a strict P-graded differential
module

`

CtilepXq,dtile
˘

which is OpPq-filtered chain equivalent to the differential
module

`

CdiscpXq,ddisc
˘

via OpPq-filtered chain maps h : CtilepXq Ñ CdiscpXq and
h1 : CdiscpXq Ñ CtilepXq. The OpPq-filtered chain equivalence h induces isomor-
phisms

␣

hβ∖α : H
tilepGβ∖αXq Ñ HdiscpGβ∖αXq | α, β P OpPq

(

which form an
isomorphism of Cartan-Eilenberg systems:22

HdiscpGβ∖αXq HdiscpGγ∖αXq HdiscpGγ∖βXq HdiscpGβ∖αXq

HtilepGβ∖αXq HtilepGγ∖αXq HtilepGγ∖βXq HtilepGβ∖αXq

hβ∖α hγ∖α hγ∖β hβ∖α

for all α, β, γ P OpPq.

22cf. [21, Eqn. (1.2)].
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REMARK 4.26. There is a special case when disc is a quasi-isomorphism, i.e.

Hpdiscq : HpXq Ñ HpXq

induces an isomorphism HpX,T q – HpX,ďq, where the latter is taken to be the
singular homology of the finite topological space pX,ďq. This is a situation which
commonly arises in practice, e.g. disc is a CW decomposition map and pX,ďq is a
simplicial or cubical complex.23 In this case we interpret (4.21) as

pX,T q pX,ďq

pP,ďq

disc

–

tile part

Let CpartpXq be the tessellar P-graded differential module for part, for which Epart

is isomorphic to Etile given by the P-graded differential module CtilepXq (this fol-
lows from an elementary five lemma argument), q.v. Sect. 6.2 for further discus-
sion.

After this general interlude of bi-topological discretzation we return to the
case pX,T ,T ´

‚ q. Assume that pX,T q is a finite regular CW-complex and let
disc “ cell, part “ dyn “ ϖ and P “ SC “ X{„: , cf. (4.24). If we use the discrete
space pX,ď:q then the convex sets in SC are given by U ∖ U1, U,U1 P OpX,ď:q.
The homology HpartpU∖ U1q is well-defined and isomorphic to HtilepGU∖U1Xq

per Remark 4.26. The homology HtilepGU∖U1Xq is given by the relative homology
HpFUX,FU1Xq and can be computed from a cellular chain complex. Summarizing,
we have:

THEOREM 4.27. Given the composition X cell
ÝÝÑ X dyn

ÝÝÑ SC. Then,

(4.23) HdynpU∖ U1q – HtilepGU∖U1Xq – HcellpGU∖U1Xq – HBMpGU∖U1Xq,

where HBMpGU∖U1Xq is the Borel-Moore homology of the Morse tile GU∖U1X .

The homologies HtilepGU∖U1Xq are invariants of a Morse pre-order pX,ď:q.
We can visualize this structure by augmenting the di-graph for pSC,ďq by the
homology HpartpSq – HBMpGSXq at the nodes of the graph, cf. Fig. 1.5. The
associated Cartan-Eilenberg system yields the homologies HtilepGU∖U1Xq. Such
invariants can also be defined using the topologies T ´

‚ and T :, cf. Sect. 4.5. In
the forthcoming sections we will implement these ideas for a large class of flows,
so-called parabolic flows, and produce algebraic-combinatorial representations of

23Or more generally, if each fξ is a homeomorphism; such a CW complex is called regular.
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its global dynamics.

(4.24)

pX,ďq

pX,T ,T ´
‚ q pX,ď:q pSC,ďq

pX,ď´‚ q

id
dyn

cell

cell

cell

cell

dyn

id
dyn

REMARK 4.28. The map tile : X Ñ SC is a discretization map and the homol-
ogy Htile is the tessellar homology of the discretization map tile. The two stage
approach in this section allows us to compute Htile from an SC-graded cellular
chain complex. For any discretization ind: SC Ñ Z we can consider Htile as a bi-
graded homology theory (in the case of field coefficients) as described in Section
4.2.3. The bi-graded Betti numbers/homology depend on our choice of the dis-
cretization ind. A possible choice for ind is a linear extension of SC. In Section 5.5
we consider tessellar homology for parabolic flows with a linear discretization.

Consider the diagram

pX,T q pX,ďq pSC,ďq Zcell

tile

skel

dyn ind

where we treat tile as discretization map and ind: SC Ñ Z is a linear discretization
map. Then for for any convex set U ∖ U1 the Morse relations in Thoerem 4.18 are
given by

(4.25)
ÿ

SPU∖U1

P tile
λ,µpGSXq “ P tile

λ,µpGU∖U1Xq `

8
ÿ

r“1

p1 ` λrµqQr
λ,µ.

The poset pSC,ďq yields a partial order on the pairs
`

S, P tile
λ,µpGSXq

˘

, S P SC, via

(4.26)
`

S, P tile
λ,µpGSXq

˘

ď
`

S 1, P tile
λ,µpG1SXq

˘

ðñ S ď S 1.

The poset of pair
`

S, P tile
λ,µpGSXq

˘

is denoted by p>,ď:q and is called the tessel-
lar phase diagram of the Morse pre-order pX,ď:q. Considering only non-trivial
Poincaré polynomials yields the pure tessellar phase diagram p>,ď;q, with order-
embedding

(4.27) p>,ď;q ãÑ p>,ď:q,

cf. Fig. 1.4. The treatment of semi-flows up to this point is a tale of two topolo-
gies. In that setting the p-index in βtile

p,q can be thought of as a manifestation of the
topology induced by the semi-flow and the q-index as a manifestation of the space
topology.
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4.5. Morse tessellations, Morse decompositions and the Conley index

For a Morse pre-order pX,ď:q we have a Morse tessellation as given in (3.14).
As a matter of fact the filteringU ÞÑ FUX ,U P OpX,ď:q defines a finite, distributive
lattice N “

␣

FUX | U P OpX,ď:q
(

Ă ABlockpφq of attracting blocks. This yields the
Morse tessellation pT,ďq given by

(4.28) TpNq :“
␣

T “ U ∖ Uđ | U P JpNq
(

, T ď T 1 ðñ U Ă U 1,

where T “ GSX , U “ FÓSX and Uđ “ FÓS∖SX , S P SC, cf. [44]. Such a tessella-
tion does model the ‘direction’ of dynamics but not the invariant dynamics. How-
ever, the compactness of the phase space pX,T q does imply the existence of key
invariant sets: attractors. Recall that a set A Ă X is an attractor if there exists an at-
tracting block U such thatA “ ωpUq. The attractors of φ form a bounded, distribu-
tive lattice Attpφq with binary operations A_A1 “ AYA1 and A^A1 “ ωpAXA1q.
The map U ÞÑ ωpUq is a surjective lattice homomorphism, cf. [42]. By compact-
ness:

U P ABlockpφq, U ‰ ∅, ùñ A “ ωpUq ‰ ∅.

In terms of the sublattice N we obtain a sublattice ω : N ↠ A Ă Attpφq, where
A :“

␣

A P Attpφq | A “ ωpUq, U P N
(

. In general this map need not be a isomor-
phism which yields an inportant conclusion: knowing N provides no insight into
structure of A from information given by pX,ď:q. However, topology can partly
answer this question. From the map ω : N ↠ A we have the following congruence
relation: U „ U 1 if and only if ωpUq “ ωpU 1q. Since we cannot utilize this rela-
tion solely on the information given by pX,ď:q we use a topological principle for
flows also known as Wazewski’s principle,24 cf. [12, Sect. II.2]. This can be restated
as follows:

(4.29) U „ U 1 ùñ HpU,U X U 1q – HpU Y U 1, U 1q – 0,

where H is the singular homology functor. The key representation of dynamics is
via a tessellated Morse decomposition which we define as the dual of the homomor-
phism ω : N ↠ A. By Birkhoff duality we obtain an injective order preserving map
Jpωq : JpAq ãÑ JpNq. Invoking the Conley form we obtain an injection π : MpAq ãÑ

TpNq, where the poset pMpAq,ďq, with MpAq :“
␣

M “ A´Ađ | A P JpAq
(

, is called
a Morse representation. The notation A´Ađ :“ AX pAđq˚ ‰ ∅ is the Conley form on
Attpφq, cf. [44]. As before M ď M 1 if and only if A Ă A1. The Morse sets in a Morse
representation are never the empty set! Via Birkhoff duality we can given an explicit
formula for the embedding π. However, from [44] there exists a left inverse to
π: the unique image M ÞÑ T satisfies InvpT q “ M , where InvpT q is the maximal
invariant sets in T . The latter provides a easy way to construct the embedding π.
As before we do not have control over the poset set MpAq. Consider a Morse set
M and πpMq “ T . Then, for any pair U,U 1 P N with U ∖ U 1 “ πpMq we have

24To establish Wasewski’s principle the continuity of φ is used a crucial way.
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InvpU ∖ U 1q “ ωpUq´ωpU 1q “ M ‰ ∅ and U ȷ U 1. For the latter we can now
invoke Wazewski’s principle in (4.29):

(4.30) HpU,U X U 1q – HpU Y U 1, U 1q ‰ 0 ùñ M “ InvpU ∖ U 1q ‰ ∅.

By construction HtilepGU∖U1Xq – HpFUX,FU1Xq only depends on U ∖ U1 which
justifies the definition

(4.31) HCpT q :“ HtilepGU∖U1Xq, T “ FUX ∖ FU1X,

and is called the Conley index of a Morse tile T , cf. [12]. In the case of a CW-
decomposition via cell the Conley index T is given as the Borel-Moore homology
of the tile T . The Conley index is an algebraic invariant for congruent pairs pU,U 1q.
By construction HCpT q ‰ 0 implies that T is the image of a Morse set M under
π, i.e. M “ InvpT q ‰ ∅. The Conley index in (4.31) is not only well-defined for
tiles in TpNq but for any Morse tile T “ U ∖ U 1 obtained from attracting blocks
U,U 1 P N.25

The algebraic topological approach in this chapter is to use invariants based
on the topology pX,T q. Wazewski’s principle allows an interpretation of the in-
variants that yield information about the invariant dynamics of the flow which
defines the second topology pX,T ´

‚ q. In the application of the theory to dynami-
cal systems the topology pX,T q is assumed to be given while the second topology
pX,T ´

‚ q is not known a priori. However, for the latter we have information about
discretizations pX,ď´‚ q. This track of combining information of two topologies
and invoking Wazewski’s principle yields a powerful algebraic topological tool
for studying invariant sets of flows. In Section 4.4 we also indicated that the tes-
sellar homology can be defined for three topologies. The case outlined above is
worked out. Invariants based on pX,T ,T ´

‚ q and pX,ď:q take into account the
bi-topological nature of the problem. In future work we will examine these more
detailed algebraic topological invariants. For the application in the forthcoming
chapter and applications to Conley theory the appoach in Section 4.4 suffices.

25The above arguments apply to sublattices of N such as ∅ Ă U X U 1 Ă U Ă X , and ∅ Ă U 1 Ă

U Y U 1 Ă X .





CHAPTER 5

Parabolic recurrence relations and flows

In the final part of this text we study a class of flows for which we demonstrate
the discretization of topology and dynamics as described in the preceding chap-
ters. The class of systems we consider are called discrete parabolic flows. Discrete
parabolic flows and associated parabolic recurrence relations occur in various ap-
plications of dynamical systems and represent important classes of conservative
dynamics as well as dissipative dynamics, cf. [66, 65, 67]. Examples of parabolic re-
currence relations are discretizations of uniform parabolic PDE’s, monotone twist
maps and fourth order conservative differential equations, etc, cf. [25, 24]. The na-
ture of discrete parabolic flows makes them very suitable for displaying the theory
developed in this paper. The application to parabolic systems entails the defini-
tion of explicit CA-discretizations and MA-discretizations. The algebraic methods
reveal a new invariant for braids and parabolic flows, q.v. Sect. 5.5.2.

5.1. Discretized braid diagrams

Braids can be treated in various ways. One way is to regard braids as a path in
a two dimensional configuration space. The more hands-on way to think of braids
as a collection of ‘strands’ between to copies of the Eucledian plane. A generic
projection onto the strip Rˆr0, 1s contains all information by tagging intersections
as postive, or negative. This representation is called a braid diagram. In this text
we consider a special class braid diagrams, piecewise linear and with positive
intersections. From [24] we recall the notion of closed discretized braid daigram.

DEFINITION 5.1. The space of closed discretized period d braid diagrams on m

strands, denoted Dd
m, is the space of unordered collections of strands x “ txαu

m´1
α“0 ,

defined as follows:

(i) (Strands): each strand xα “ pxα0 , x
α
1 , . . . , x

α
d q P Rd`1 consists of d`1 anchor

points xαj ;

(ii) (Periodicity): xαd “ x
θpαq
0 for all α “ 1, . . . ,m, for some permutation θ P Sm

(symmetric group);
(iii) (Non-degeneracy): for any pair of distinct strands xα and xα

1

such that
xαi “ xα

1

i for some i, the following transversality condition holds

`

xαi´1 ´ xα
1

i´1

˘`

xαi`1 ´ xα
1

i`1

˘

ă 0.

69
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The elements x P Dd
m are referred to as discretized braids, or discretized braid dia-

grams. The spaces Dd
m can be topologized as metric spaces, cf. [24], and the con-

nected components of Dd
m, called discrete braid classes, are denoted by rxs.

REMARK 5.2. Note that the space Dd
1 consists of tuples x “ px0, ¨ ¨ ¨ , xdq, with

x0 “ xd and no additional conditions on x. Therefore, Dd
1 – Rd as metric spaces.

Let us start with an important invariant of discretized braids. Given a dis-
cretized braid x P Dd

m. Two of its strands xα and xα
1

intersect if

(i)
`

xαi ´ xα
1

i

˘`

xαi`1 ´ xα
1

i`1

˘

ă 0 for some i, or
(ii) if for some i, xαi “ xα

1

i and
`

xαi´1 ´ xα
1

i´1

˘`

xαi`1 ´ xα
1

i`1

˘

ă 0.

Define ιpxα, xα
1

q :“ #
␣

number of intersection between xα and xα
1(

as the local
intersection number. Define the crossing number by

λpxq :“
1

2

ÿ

α ­“α1

ιpxα, xα
1

q P N.

The crossing number is an invariant for a braid classes rxs, i.e. λ is constant on
components rxs Ă Dd

m.

REMARK 5.3. Generically a discrete braid has the property xαi ‰ xα
1

i for all i
and for all α ‰ α1. The local intersection number can be defined for generic braids
by counting sign changes, i.e. indices i for which (i) is satisfied.

Unordered sets x “ txαumα“1 for which Definition 5.1(iii) is not satisfied are
called singular braids and are denoted by Σd

m. Pairs of strands for which Definition
5.1(iii) is not satisfied are called non-transverse and the crossing number is not de-
fined in this case. We can however consider a variation on the crossing number
that is defined for both discretized braids and singular braids. Let x P Σd

m be a
singular braid. Then, following [22], we define the set

Sϵpxq :“
!

x̃ P Dd
m | |x̃αi ´ xαi | ă ϵ, @i and @α

)

‰ ∅.

The crossing numbers

λ´pxq :“ min
Sϵpxq

λ and λ´pxq :“ max
Sϵpxq

λ

are independent of ϵ provided ϵ ą 0 is sufficiently small and therefore are well-
defined. For x P Dd

m the numbers λ´pxq and λ`pxq are also defined in which case
λ´pxq “ λ`pxq “ λpxq, cf. [22].

For a discrete braid x its braid components are given by the cycles of the permu-
tation τ . The the orders of the cycles which we refer to as the cycle orders is another
invariant for a braid class rxs. For example for θ P S5 given by θ “ p01qp234q

the cycle orders are 2 and 3. We can define a special space of braids by coloring
components. In this text we are interested in particular in braids with dual color-
ing. The space of 2-colored discretized braids Dd

n,m consists of ordered pairs
`

x, y
˘

,
where x “ txαu

n´1
α“0 P Dd

n and y “ tyβu
m´1
β“0 P Dd

m, and px, yq satisfies Definition
5.1(i)-(iii). In other words px, yq P Dd

n`m. We denote a 2-colored discretized braid
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by x rel y. The canonical projection π : Dd
n,m Ñ Dd

m given by x rel y ÞÑ y yields
the fibers Dd

n rel y “ π´1pyq. A connected component rxs rel y is called a (discrete)
relative braid class component with skeleton y. A connected component rx rel ys in
Dd

n`m is called a (discrete) relative braid class. The fibers π´1pyq X rx rel ys consist of
relative braid class components rxs rel y and are referred to as the (discrete) relative
braid class fibers of rx rel ys. In most situations a braid class fiber consists of a single
braid class component.

DEFINITION 5.4. A relative braid class rx rel ys is called non-degenerate, or
proper if the cycle orders in x differ form the cycle orders in y. In particular, for
x rel y P Dd

1,m is proper if the cycle orders in y are all larger than 1. In latter case
the skeleton y is also called proper.

If rx rel ys is proper, then its fibers π´1pyq X rx rel ys are and therefore also its
components rxs rel y are proper as well. For a skeleton y P Dd

m we consider the
singular braids in x rel y P Σd

n,m. Denote the fiber of singular relative braids by
Σd

n rel y “ π´1pyq.

5.2. Parabolic flows

Discretized braids introduced in the previous section are intimately related to
a class of recurrence relations.

DEFINITION 5.5. A parabolic recurrence relation (of period d ą 0) is a system of
equations of the form

(5.1) Ripxi´1, xi, xi`1q “ 0, i P Z,

where each Ri : R3 Ñ R is a smooth function such that

(i) Ri`d “ Ri for all i;
(ii) B1Ri ą 0 and B3Ri ą 0.1

We denote the recurrence relation by R “ pRiq.

The following proposition establishes periodic solutions of parabolic recur-
rence relations as discretized braid diagrams. At a latter stage we also define
associated flows which yields an even stronger symbiosis between parabolic re-
currence relations and discretized braids.

PROPOSITION 5.6 (cf. [24]). Let x “ txαu
m´1
α“0 be a set of strands satisfying Defi-

nition 5.1(i)-(ii) with the property that Ripx
α
i´1, x

α
i , x

α
i`1q “ 0, for all i and all α. Then,

x P Dd
m, i.e. Definition 5.1(iii) is also satisfied. Such a discretized braid is called a station-

ary braid with respect to (5.1). In particular, the crossing number of x is well-defined.

1One can weaken the monotonicity with one of the inequalities to be ě for every i. For conve-
nience in this paper we assume strict inequalities for both partial derivatives unless indicated explicitly.
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Associated to a parabolic recurrence relation we consider the following system
of differential equations:

(5.2) 9xi “ Ripxi´1, xi, xi`1q, i P Z.

The solution operator as well as the system of differential equations will be re-
ferred to as a discrete parabolic flow. The objective is to find k-periodic solutions of
parabolic recurrence relations, i.e. sequences pxiq, with xi`kd “ xi for some k P N,
which satisfies Equation (5.1). In order to build a suitable theory for periodic solu-
tions we use the concept of discretized braids, cf. [24] Multiple periodic sequences
with possible different periods may be regarded as a discretized braid diagram.

The parabolic equation in (5.2) defines a local flow φ on the space of 1-periodic
sequences Dd

1 – Rd with the standard metric topology. We refer to φ as a parabolic
flow. We say that a braid y P Dd

m is a skeletal braid for φ if Equation (5.1) is satisfied
for all yα P y. Shorthand notation Rpyq “ 0 and y is also referred as a skeleton for
φ. Recall that a skeleton for which the cycle orders are all larger than 1 is called a
proper skeleton. Relative braids x rel y P Dd

1 rel y for which y is proper are proper
as relative braids. In this case there is an important relation between parabolic
dynamics and the crossing number invariants.

PROPOSITION 5.7 (cf. [24], [22]). Let y P Dd
m be a proper skeleton (stationary braid)

for φ, i.e. all cycle orders are strictly larger than 1, and let x rel y P Σd
1 rel y. Then, for

ϵ ą 0 sufficiently small, we have that

(i) φpt, xq rel y P Dd
1 rel y for all 0 ă |t| ď ϵ;

(ii) for all ´ϵ ď t´ ă 0 ă t` ď ϵ it holds that

λ`px rel yq “ λ
`

φpt´, xq rel y
˘

ą λ
`

φpt`, yq rel y
˘

“ λ´px rel yq.

PROOF. Denote by k#y the k-fold covering of y, i.e. we take k concatenated
copies of y. The braid y gives a permutation θ on the on the symbols t1, ¨ ¨ ¨ ,mu,
cf. Defn. 5.1(ii). Choose k to be order of the permutation θ. Then, k#y consists of
1-periodic sequences for i P t0, ¨ ¨ ¨ , kdu. Moreover,

(5.3) λ
`

k#x rel k#y
˘

“ kλ
`

x rel y
˘

.

SinceRi`d “ Ri we have that the flow φk generated byψ on Dkd
1 is given by the k-

fold covering if we choose x P Dd
1 , i.e. φkpt, k#xq “ k#φpt, xq. If x P Σd

1 rel y, then
k#x rel k#y P Σkd

1 rel k#y. Let yα be a strand such x and yα are non-transverse.
Since all cycle orders of y are larger than 1 we have that all relative braids x rel y

are proper and thus x ´ yα ‰ 0 for all α (strands don not coincide). By the main
result in [22] this implies that ι

`

φkpt´, xq, k#yα
˘

ą ι
`

φkpt`, xq, k#yα
˘

for all ´ϵ ď

t´ ă 0 ă t` ď ϵ. If we combine this with the crossing number for k-fold coverings
we obtain

ÿ

α

ι
`

φkpt´, xq, k#yα
˘

ą
ÿ

α

ι
`

φkpt`, xq, k#yα
˘

,
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which implies that λ
`

φkpt´, xq rel k#y
˘

ą λ
`

φkpt`, xq rel k#y
˘

and thus

λ
`

k#φpt´, xq rel k#y
˘

ą λ
`

k#φpt`, xq rel k#y
˘

.

Property (5.3) then gives

λ
`

φpt´, xq rel y
˘

ą λ
`

φpt`, xq rel y
˘

.

From [22, Thm. 1(ii)] it also follows that λ
`

φpt´, xq rel y
˘

“ λ`px rel yq and
λ
`

φpt`, xq rel y
˘

“ λ´px rel yq, which completes the proof □

As a consequence of the above proposition we conclude that λ`p¨ rel yq is a
discrete Lyapunov function for φ and the value of the Lyapunov function strictly
drops at singular relative braids.

REMARK 5.8. If we do not require the cycle orders for y to be strictly larger
than 1 then if x may coalesce with the 1-periodic strands in y in which case asso-
ciated the singular braid is stationary and Proposition 5.7(ii) does not hold in that
case. For application of these technique for improper braid classes recall [24, 67].

Besides crossing numbers and cycle orders another invariant for relative braid
classes can be defined, cf. [24], and which is of algebraic topological nature. In this
case we assume that the components rxs rel y are bounded as sets in Rd. In Section
5.5.1 we provided an extensive account of the algebraic invariant which is also re-
ferred to as the Braid Conley index. The theory in [24] implies that the invariants
are homotopy invariants, i.e. a homotopy hspyq in Dd

m yields isomorphic invari-
ants. The latter is useful for choosing convenient representatives y for studying
the relative braid class fibers in Dd

1 rel y.

5.3. Closure algebra discretizations for parabolic flows

In this section we assume that a skeleton y P Dd
m always consist of two ex-

tremal strands: define y´ “ y0 and y` “ ym´1 such that the remaining strands
satisfy y´i ă yαi ă y`i , for all α “ 1, ¨ ¨ ¨ ,m ´ 2. The latter collection of strands is
denoted by ẙ. The skeleton y now induces a bounded cubical complex as will be
explained in Section 5.3.1.

DEFINITION 5.9. Let y P Dd
m be as described above and assume that ẙ is

proper, cf. Defn. 5.4. We consider points x in

(5.4) X “
␣

x P Dd
1 | y´i ď xi ď y`i

(

Ă Rd,

which is a compact metric space with metric topology induced by Rd, cf. Rem.
5.2. Let φ be a parabolic (local) flow on X generated by Equation (5.2) where the
parabolic recurrence relation R satisfies Rpyq “ 0.

Regard ȳ “ ty´, y`u as sub-skeleton. For x equal to either y´ or y` the local
flow φ is stationary. If xi “ y´i , or xi “ y` for at least one i, i.e. x P BX as subset
of Rd, then x rel ȳ P Σd

1 rel ȳ. Proposition 5.7 then implies that λ
`

φpt, xq rel ȳ
˘

“
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λpx rel ȳq “ 0, which yields φpt, xq P X for all t ě 0. If we invoke the remain-
ing strands in y the semi-flow φ will display monotone behavior with respect to
relative braid classes in the spirit of a Morse tessellation as is described in the
forthcoming sections. In practical terms φpt, xq rel y is generically contained in a
relative braid and φpt, xq rel y can evolve from one braid class to the next and not
return. Summarizing, the parabolic flows satisfy the following properties:

(i) φ : R` ˆX Ñ X is smooth semi-flow on X ;
(ii) the braid y P Dd

m is a skeleton for φ.

We now study parabolic flows on X for a fixed skeleton y P Dd
m. From this point

on we assume that y is a skeleton as described above with ẙ proper.

REMARK 5.10. The boundary strands y´ and y` model boundary conditions
on the parabolic flow pushing in. Using alternating strands we can also model
boundary condition pushing out, cf. [24]. Variations on push-in or push-out
boundary conditions can be obtained by different combinations of multi-strand
braids. In this paper we restrict to push-in boundary conditions modeled via the
strands y´ and y`.

5.3.1. Discretization of the metric topology on X . We define a cubical com-
plex X for X as follows. From the definition of X there exists a natural grading on
X via co-dimension of tangencies. Define

GdX :“ tx | xi ‰ yαi
i ,@i, αu;

Gd´kX :“ tx | xi1 “ y
αi1
i1

, ¨ ¨ ¨ , xik “ y
αik
ik

, i1 ‰ ¨ ¨ ¨ ‰ iku,

where k “ 1, ¨ ¨ ¨ , d. Note that the indices αij are not necessarily distinct. If α “

αi1 “ ¨ ¨ ¨ “ αid , then α P t0,m´ 1u by the definition of X and the assumption that
ẙ is proper. The top cells ξ P XJ“: GdX label the connected components of the set
GdX , which we refer to as generic braids. The pd ´ kq-dimensional cells ξ P Gd´kX
label the connected components of the set Gd´kX , cf. Fig. 5.3(a). All cells realize
as open rectangular cuboids |ξ| in X and are thus homeomorphic to open k-balls
in Rk, k ą 0. The set X of cells is forms a CW-decomposition of X , cf. Sect. 2.6.2.
The map

(5.5) cell : X Ñ X, defined by cellpxq “ ξ, for x P |ξ|,

is a CW-decomposition map and thus Boolean. The co-dimension provides the
dimension grading of X:

dim: X Ñ X, with dim ξ “ q if and only if |ξ| P GqX.

The face partial order on X defines the discrete closure operator cl ξ “
§

đξ. The
triple pX, cl, | ¨ |q is a CA-discretization for X and the finite algebra pSetpXq, clq is
the associated closure algebra discretezation of pSetpXq, clq.

Note that generically a relative braid x rel y P Dd
1 rel y is a point in a top cell

|ξ|, ξ P XJ. This justifies the notation λpξq as the crossing number of a top cell.
The same applies to the crossing numbers λ´ and λ`, i.e. λ´pξq :“ min

␣

λpηq |



5.3. CLOSURE ALGEBRA DISCRETIZATIONS FOR PARABOLIC FLOWS 75

η P star ξ X XJ
(

and λ`pξq :“ max
␣

λpηq | η P star ξ X XJ
(

. Define the following
combined crossing number function on X:

Λ : X Ñ N ˆ N, ξ ÞÑ Λpξq :“
`

λ´pξq,λ`pξq
˘

x0 x1

x

x0

x1 x rel y

rxs rel y

FIGURE 5.1. Skeleton y [left] and y with free strand x (in red) [middle].
A relative braid class component rxs rel y which is a top-cell in X [right].

REMARK 5.11. It is often convenient to use the following normal form for the
skeleton y: for any fixed i the cross-section py0i , y

1
i , . . . , y

m´1
i q is a permutation of

t0, 1, . . . ,m ´ 1u. That is, the anchor points pyαi q are integers and take unique
values between 0 and m ´ 1. This implies that the pairs pi, yαi q lay on the integer
lattice within the box r1, d ` 1s ˆ r0,m ´ 1s. The cubical complex X is comprised
of cells ξ which we define as follows. Consider sets I1i “ pi, i ` 1q Ă R for for
i P t0, ¨ ¨ ¨ ,m´ 2u and sets I2i “ tiu, for i P t0, ¨ ¨ ¨ ,m´ 1u. A cell ξ is given as

(5.6) |ξ| “ Ij1i1 ˆ Ij2i2 ˆ . . .ˆ Ijdid ,

where jk P t1, 2u, ik P t0, ¨ ¨ ¨ ,m ´ 2u for I1ik and ik P t0, ¨ ¨ ¨ ,m ´ 1u for I2ik .
Figure 5.3(a) below shows a skeleton y in normal form and Figure 5.3(b) depicts the
cubical complex consisting of unit squares. We can now use the cubical complex
to describe a normal form of the braid component rxs rel y with y in normal form.
The dimension of a cell ξ is given by dim ξ “

ř

jk ­“2 jk, where the integers are
determined by the representation of |ξ| in (5.6).

Figure 5.1[left] above is an example of a skeleton y P D2
8 . Figure 5.2[left] dis-

plays the CW-decomposition in terms of cubes. Figure 5.2[left] also gives the cross-
ing numbers λpξq for the top cells ξ P XJ.

5.3.2. Discretization of flow topologies. In the previous section we described
a natural CW-decomposition to discretize the metric topology on X . We now de-
fine a second discrete topology on X via a pre-order such that the map Λ : X Ñ

N ˆ N is order-preserving and which serves the purpose of discretizing the block-
flow topology T ´

‚ . The order on N ˆ N is the product order, i.e. pa, bq ď pa1, b1q

if and only if a ď a1 and b ď b1. We build a pre-order for discretizing T ´
‚ in two

steps:



76 5. PARABOLIC RECURRENCE RELATIONS AND FLOWS

(i) Define the (symmetric) relation e Ă X ˆ X as the partial adjacency relation

pξ, ξ1q, pξ1, ξq P e ðñ ξ1 P XJ and ξ P cl ξ1.2

(ii) Define the discrete flow relation ψ Ă e as follows:

pξ, ξ1q P ψ ðñ Λpξq ď Λpξ1q

By construction Λ is order-preserving. Observe that pξ, ξq P ψ if and only if ξ P XJ.
Since every relative braid and relative singular braid is associated to a unique cell
ξ we devide up the cells in X into two groups, the regular cells ξ P Xreg and the
singular cells ξ P Xsing which may be characterized as follows:

ξ P Xreg, if and only if λpξq “ λ´pξq “ λ`pξq;

ξ P Xsing, if and only if λ´pξq ă λ`pξq.

The transitive closure of ψ yields the discrete derivative operator Γ` :“ pψ`̀̀q´1

and the transitive, reflexive closure ψ`̀̀“ defines the pre-order ď` and yields the
discrete closure operator cl` :“ pψ`̀̀“““q´1, and cl` “ id Y Γ`.

LEMMA 5.12. The discrete closure operator cl` defined above satisfies the continuity
condition cl`|U| Ă |cl`U| for all U Ă X.

PROOF. By Remark 3.16 it suffices to show that φpt, xq P |cl`ξ| for all t ě 0,
for all x P |ξ| and for all ξ P X. Let ξ P X, then φpt, xq P | star ξ| for all 0 ď t ď τx
for some τx sufficiently small. If ξ P Xreg, then star ξ Ă cl`ξ3 and if ξ P Xsing, then
star ξ Ć cl`ξ. In the former case φpt, xq P | star ξ| Ă |cl`ξ| for all 0 ď t ď τx for
some τx sufficiently small. In the latter case we argue as follows. From Proposition
5.7 we have that φp´t, xq P |ξ´|,4 φpt, xq P |ξ`|, for all 0 ă t ď τx, with ξ´, ξ` P

star ξ X XJ. Moreover, λpξ´q “ λ`pξq and λpξ`q “ λ´pξq. This implies that

(5.7) Λpξ´q ą Λpξq “
`

λ`pξq,λ´pξq
˘

ą Λpξ`q.

This proves that pξ`, ξq P ψ and thus φpt, xq P |cl`ξ| for all 0 ď t ď τx for some τx
sufficiently small.

The above arguments show that for every x P X the flow satisfies φpt, xq P |η|

for all 0 ă t ď τx for some η P Xreg. Let t1 ą τx be the first time that φpt1, xq P |ζ|

for some ζ P Xsing X cl η. Then, by (5.7), Λpηq ą Λpζq and thus pζ, ηq P ψ and
consequently ζ P cl`ξ. We can repeat the above argument to conclude that the
criterion in Remark 3.16 is satisfied for all t ě 0. □

REMARK 5.13. In view of Theorem 3.14, sinceX is compact, it suffices to prove
that φpt, xq P |cl`ξ| for all 0 ď t ď τ˚, some τ˚ ą 0.

2In term of the face partial order this reads ξ ď ξ1.
3Here star is associated with the discrete topology pX,ďq given by the CW-decomposition.
4A cell ξ´ does not exist when ξ corresponds to a boundary cell for X .
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FIGURE 5.2. Cubical complex X and values of λpξq, ξ P XJ [left], for the
braid diagram displayed in Fig. 5.3. The outlined regions are magnified
in the middle and right figures and indicate the relation ψ. On the vari-
ous cells ξ P X it gives the Lyapunov function Λ.

REMARK 5.14. Equation (5.7) in the above proof also implies that pξ, ξ´q P ψ

which is equivalent to pξ´, ξq P ψ´1. The latter implies φp´t, |ξ|q Ă |cl´ξ| for
all t ě 0 and for all ξ P X, where cl´ is the closure operator obtained from the
opposite relation ψ´1 Ă X ˆ X.

Lemma 5.12 shows that pSetpXq, cl`q is a CA-discretization for the Alexandrov
topology pX,T `q defined by the parabolic flow. If we also invoke the observation
that pξ, ξq P ψ if and only if ξ P XJwe can prove an even stronger statement.

LEMMA 5.15. The discrete derivative operator Γ` satisfies Γ`|U| Ă |Γ`U| for all
U Ă X.

PROOF. The proof follows along the same lines as Lemma 5.12. As pointed
out in Remark 3.16 it suffices to show that φpt, xq P |Γ`ξ| for all t ą 0, for all x P |ξ|

and for all ξ P X. If ξ P Xreg, then either ξ P XJ, or Λpηq “ Λpξq for all all η P star ξ.
If ξ P XJ, then φpt, xq stays in |ξ| for all 0 ď t ď τx for some τx sufficiently small
and thus in |Γ`ξ| by the observation that pξ, ξq P ψ if and only if ξ P XJ. The
remaining case follows as before and therefore φpt, xq P | star ξ| Ă |Γ`ξ| for all
0 ď t ď τx for some τx sufficiently small. In particular for 0 ă t ď τx. The case
ξ P Xsing follows as in the proof of Lemma 5.12. □

REMARK 5.16. Note that Lemma 5.15 implies Lemma 5.12. This indicates that
the decomposition cl` “ id Y Γ` on SetpXq allows a discretization cl` “ id Y Γ`

on SetpXq with an explicit derivative operator Γ`. The same conclusions hold for
cl´ “ id Y Γ´ defined via the opposite relation ψ´1 Ă X ˆ X.

The CA-discretizations for pX,T ´q and pX,T `q are constructed according to
the crossing number function Λ and are especially designed to display the behav-
ior of φ with respect to singular braids, cf. Prop. 5.7. One can define more refined
discretizations that yield more discrete forward invariant sets. The next lemma
explains why we use this particular construction of CA-discretization for pX,T ´q

and pX,T `q.
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FIGURE 5.3. Cubical complex X, λ restricted to XJ and the closure op-
erator clJ induced by the relation ψ visualized as a directed graph [left].
Elements of SC with more than one top cell are outlined. Poset SC, where
vertices are labeled by λ [right].

LEMMA 5.17. Let U Ă X be a closed, forward invariant set for ψ, i.e. cl U “ U and
cl`U “ U. Then,

(5.8) Γ`U Ă intU.

In particular, U is a regular closed set in X.

PROOF. For ξ P U we distinguish between ξ P XJ and ξ R XJ. We start with
the latter. For ξ R XJconsider two cases: (i) ξ P intU. Then, star ξ Ă intU, and by
the definition of ψ we have that ψ´1rξs :“

␣

η | pη, ξq P ψ
(

Ă star ξ Ă intU.5 (ii)
ξ P U∖intU “ clU∖intU “ bdU (using the fact that clU “ U). Then, star ξ Ć U.
Under the condition that cl`U “ U regular cells ξ P Xreg satisfy the property that
star ξ Ă U. This implies that boundary cells are singular cells ξ P Xsing. As before
ψ´1rξs Ă star ξ Ă XJ and thus ψ´1rξs is open. Since cl`U Ă U also ψ´1rξs Ă U
which yields ψ´1rξs Ă XJX U Ă intU.

Consider the case ξ P UJ “ U X XJ. Then, ψ´1rξs Ă U X cl ξ Ă U since
cl U “ U and cl`U “ U. Let η P ψ´1rξs∖XJbe a cell which is not interior to U, i.e.
η P bdU. By the same argument as before η P Xsing and by Equation (5.7) we have
that Λpηq ą Λpξq which yields pξ, ηq P ψ and pη, ξq R ψ. The latter contradicts
the existence of boundary cells η P ψ´1rξs. Consequently, ψ´1rξs Ă intU, which
holds for every ξ P U.

Iterating this procedure gives pψ´1qkrξs Ă intU, k ě 1 and thus Γ`ξ Ă intU,
cf. Thm. 3.14. This proves that Γ`U Ă intU. The realization |U| is a closed, for-
ward invariant set and satisfies φpt, |U|q Ă int |U| for all t ą 0. Therefore |U| is thus
a closed attracting block. Such sets a regular closed by Theorem 3.23. Since the
CA-discretization pX,ď, | ¨ |q is Boolean the same holds for the sets U in pX,ďq. □

From the previous consideration we propose a pre-order ď: and we show that
ď: yields the right continuity properties with respect to cell as defined in (5.5).

5Note that this does not require closedness for neither of the discrete topologies.
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Define the pre-order

(5.9) ď: :“ ď _ ď`, 6

i.e. U is closed in pX,ď:q if and only if cl U “ U and cl`U “ U.

THEOREM 5.18. The pre-order ď: defines a Morse pre-order for pX,T ,T ´
‚ q, i.e.

the maps
cell : pX,T q Ñ pX,ď:q, and cell : pX,T ´

‚ q Ñ pX,ě:q,

are continuous.

PROOF. To proof the above statement we need to show that for U Ă X closed
in pX,ď:q the pre-image cell´1U “ |U| is closed in pX,T q and open in pX,T ´

‚ q.
Let U be closed in pX,ď:q. Then, cl U “ U and cl`U “ U which implies that |U| is
closed in pX,T q. By Lemma 5.17

φpt, |U|q Ă
ď

tą0

φpt, |U|q “ Γ`|U| Ă |Γ`U| Ă | intU| “ int |U|, @t ą 0,

which, by Lemma 3.7, proves that |U| is open in pX,T ´
‚ q. □

The above theorem shows that sets that are closed in both discrete topologies
are closed attracting blocks and therefore ď _ ď`“ď: defines a Morse pre-order
for parabolic flows with skeleton y and which is an antagonistic coarsening of
discretizations for both T and T ´

‚ , cf. Sect. 2.5, i.e. take ď: and ě: respectively.

REMARK 5.19. If U Ă X is a closed, backward invariant set for ψ, i.e. cl U “ U
and cl´U “ U. Then, Γ´U Ă intU. The arguments in the proof of Lemma 5.17
remain unchanged if we replace ψ with ψ´1. For the latter we use the first part
of the inequality in (5.7). This proves the same statement for closed, backward
invariant sets.

REMARK 5.20. From the previous consideration we can define a discretization
of the block-flow topology T ´

‚ . Using the relation ψ as defined above we have
the derivative operators Γ´,Γ` : SetpXq Ñ SetpXq. Define the discrete operator
Γ´‚ :“ Γ´cl. Since Γ´ gives a DA-discretization for the Alexandrov topology T ´

we have by Remark 3.16 that

φp´t, cl |ξ|q “ φp´t, |cl ξ|q Ă |Γ´cl ξ| “ |Γ´‚ ξ|, @t ą 0.

The discrete operator Γ´‚ satisfies the hypotheses of Lemma 3.13 and therefore
cl´‚ : SetpXq Ñ SetpXq, given by Lemma 3.13 defines a CA-discretization for pX,T ´

‚ q.
The antagonistic coarsening of pX, cl, cl´‚ , | ¨ |q is the pre-order ď: in (5.9).

The following lemma gives a characterization of the transitive, reflexive clo-
sure of ψ.

6The meet of two pre-orders is defined as the transitive closure of the union of the two relations,
i.e. ď _ ď`:“ pď Y ď`q`̀̀ .
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LEMMA 5.21. pξ, ξ1q P ψ`̀̀“““ if and only if there exist cells ξ0, ¨ ¨ ¨ ξℓ, with ξ0 “ ξ,
ξℓ “ ξ1 and pξi, ξi`1q P XJˆGd´1X, or pξi, ξi`1q P Gd´1X ˆ XJ, such that

(5.10) pξ0, ξ1q, pξ1, ξ2q, ¨ ¨ ¨ , pξℓ´2, ξℓ´1q, pξℓ´1, ξℓq P ψ.

PROOF. We prove the lemma in one direction since (5.10) trivially implies
pξ, ξ1q P ψ`̀̀“““. We may assume without loss of generality that ξ, ξ1 P XJ, ξ ‰ ξ1.
Indeed, if ξ R XJ then ξ P Xreg, or ξ P Xsing. For the former we can choose
ξ̃ P star ξ X XJ such that Λpξ̃q “ Λpξq, and for the latter case λ´pξq ă λ`pξq.
Therefore we can choose ξ̃ P star ξXXJsuch that

`

λ´pξq,λ´pξq
˘

“ Λpξ̃q ă Λpξq “
`

λ´pξq,λ`pξq
˘

. We can thus choose ξ̃ P star ξ X XJ such that Λpξ̃q ď Λpξq. Simi-
larly, if ξ1 R XJwe can choose ξ̃1 P star ξ1 X XJ such that Λpξq ď Λpξ̃1q.

By definition pξ, ξ1q P ψ if (a) ξ1 P XJand ξ P cl ξ1, or (b) ξ P XJand ξ1 P cl ξ, or
(c) ξ “ ξ1 which we may exclude in the proof. Consequently, pξ, ξ1q P ψ`̀̀“““ implies
the existence of

pξ, η0q, pη0, σ1q, ¨ ¨ ¨ , pσk´1, ηk´1q, pηk´1, ξ
1q P ψ,

with ηj R XJ and σj P XJ. The lemma is proved if we prove (5.10) for the case
pσ, ηq, pη, σ1q P ψ, σ, σ1 P XJ and η R XJ. Assume without loss of generality that
η P GkX, k ă d ´ 1. By the definition of ψ it holds that Λpσq ď Λpηq ď Λpσ1q,
which is equivalent to

`

λpσq, pλpσq
˘

ď
`

λ´pηq, pλ`pηq
˘

ď
`

λpσ1q, pλpσ1q
˘

.

Since λ´pηq is minimal over star η X XJ and λ`pηq is maximal over star η X XJ

it follows that λpσq “ λ´pηq ď λ`pηq “ λpσ1q. Moreover, every σ2 P star η X XJ

satisfies λpσq ď λpσ2q ď λpσ1q. Choose σ2 P star η X XJ such that cl σ X cl σ2 X

Gd´1X ‰ ∅ and let η1 P Gd´1X be the unique cell in cl σ X cl σ2 X Gd´1X. Then,
Λpσq ď Λpη1q ď Λpσ2q ď Λpσ1q and pσ, η1q, pη1, σ2q P ψ. Observe that cl σ1 and
cl σ2 intersect in a cell η̃ P star η with Λpσ2q ď Λpη̃q ď Λpσ1q and star η̃ Ă star η.
Now repeat the above steps by using the cells in star η X XJ at most once. This
process terminates after finitely many steps, proving the lemma. □

THEOREM 5.22. The partial equivalence classes of ψ`̀̀“ correspond to the discrete
relative braid class components in Dd

1 rel y for a given skeleton y.

PROOF. We distinguish regular and singular cells. Every regular cell ξ deter-
mines a discrete relative braid. This assignment is not one-to-one in general. Let
the braid class component rxs rel y be the connected component of x rel y for some
x P |ξ|. Any point x1 rel y P rxs rel y corresponds to a cell ξ1 P Xreg, with x P |ξ1|.
Let γ : r0, 1s Ñ rxs rel y be a path joining x and x1. Then, γpsq P |ξs| Ă rxs rel y,
ξs P Xreg for all s P r0, 1s. If ξ P Xreg, then star ξ Ă Xreg and Λpηq “ Λpξq for
all η P star ξ. Therefore, the set

Ť

sPr0,1s | star ξs| is an open covering of γ. Since
Λpstar ξsq is constant for all s, the compactness of path γ implies that Λ is constant
on

Ť

sPr0,1s star ξs and in particular Λpξq “ Λpξ1q. The path also yields a chain ξi
satisfying (5.10) which proves, using Lemma 5.21, that pξ, ξ1q P ψ`̀̀“““. Since this
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holds for any two relative braids in rxs rel y we conclude that the set of all cells U
with |U| “ rxs rel y is contained in a partial equivalence class of ψ`̀̀“““. Conversely,
equivalent cells belong to the same braid class component which proves that the
braid class components are realized by the partial equivalence classes of ψ`̀̀“““. □

From the theory in Section 3.4 we have that ď: restricted to XJ defines a con-
densed Morse pre-order pXJ,ďJq. The condensed Morse pre-order pXJ,ďJq can be
characterized as follows. We define a relation ψJ on XJ in two steps.

(i) Let eJĂ XJˆ XJbe the (symmetric) adjacency relation given by

pξ, ξ1q P eJ ðñ Gd´1X X cl ξ X cl ξ1 ‰ ∅ and ξ ‰ ξ1,

i.e. pξ, ξ1q P eJ if and only if the cells }ξ} and }ξ1} intersect along a pd´ 1q-
dimensional face.7

(ii) Let ψJ Ă eJbe defined as follows:

pξ, ξ1q P ψJ ðñ λpξq ď λpξ1q,

cf. Fig. 5.3[left] and [right].

THEOREM 5.23. The transitive, reflexive closure ψJ`̀̀“
““ is the restriction ďJ of ď:

to XJ. In other words, ψJ`̀̀“
““ is a condensed Morse pre-order for φ.

PROOF. Let pξ, ξ1q P ψJ, then ξ and ξ1 are adjacent top cells and λpξq ď λpξ1q.
By definition there exists a unique cell η P Gd´1X X cl ξ X cl ξ1, and star η “

tη, ξ, ξ1u. The Lyapunov functions for these cells are given by Λpξq “
`

λpξq,λpξq
˘

,
Λpηq “

`

λpξq,λpξ1q
˘

and Λpξ1q “
`

λpξ1q,λpξ1q
˘

. Consequently, Λpξq ď Λpηq ď

Λpξ1q and thus pξ, ηq, pη, ξ1q P ψ. By definition pξ, ξ1q P ψJ
`̀̀“““ is equivalent to pairs

pξ0, ξ1q, ¨ ¨ ¨ , pξℓ´1, ξℓq P ψJ,

with ξ0 “ ξ and ξk “ ξ1. Therefore, pξ, ξ1q P ψJ
`̀̀“““ implies pξ, ξ1q P ψ`̀̀“““. We obtain

the inclusion, ψJ`̀̀“
““

Ă ψ`̀̀“““ X pXJˆ XJq.
Conversely, let pξ, ξ1q P ψ`̀̀“““XpXJˆXJq. By Lemma 5.21 there exist ξ0, ¨ ¨ ¨ , ξ2ℓ,

with ξ0 “ ξ and ξ2ℓ “ ξ1, such that (5.10) holds. This yields

pξ2i, ξ2i`2q P ψJ, i “ 0, ¨ ¨ ¨ , ℓ´ 1,

which implies that pξ, ξ1q P ψJ
`̀̀“““. This provides the opposite inclusion ψ`̀̀“““ X

pXJˆ XJq Ă ψJ
`̀̀“““ and thus ψ`̀̀“““ X pXJˆ XJq “ ψJ

`̀̀“““.
Since ď restricted to XJ is an anti-chain the restriction of ď: to XJ is equal to

the restriction of ď` to XJ, i.e. ψ`̀̀“““ X pXJˆXJq. Therefore, the restriction of ď: to
XJ is equal to ψJ`̀̀“

““
X pXJˆ XJq, which completes the proof. □

By Theorem 5.23 the transitive, reflexive closure ψJ`̀̀“
““ is a closure operator

on XJ, i.e. clJ “ pψJ
`̀̀“““

q´1, and is thus a condensed Morse pre-order for φ. By
Theorem 5.22 the braid class components correspond to the partial equivalence
classes of ψ`̀̀“ and therefore with the partial equivalence classes of ψJ`̀̀“. By the

7Recall that Gd´1X is the skeleton of co-dimension one cells in X.
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order-preserving map dyn: pX,ďq ↠ pSC,ďq given in (3.18) we obtain the partial
equivalence classes of ď:. The interior yields the braid class components: the
open sets int |dyn´1S|, S P SC, describe all discrete braid class components. The
advantage of |dyn´1S| is that its Borel-Moore homology gives its Conley index via
HtilepSq. Another way to retrieve the braid class components from ďJ is to use
Section 3.4.2. In this way we obtain the closures of the braid class components.
This way one cannot immediately determine its Conley index

In the next section we carry out a specific analysis for a number of examples
of parabolic systems.

5.4. Recipe for global decompositions

In this section we apply the methodology of this text to parabolic flows in
combination with the theory of discretized braids. This application will use all
of the ingredients described in the previous chapters. We also place an empha-
sis on the computational aspects and highlight how these can be carried out in
practice. The goal is to obtain a Morse pre-order for a discrete parabolic flow φ,
which encodes the directionality of φ, from which we can determine a (graded)
tessellar differential module, a graded representation (connection matrix), and a
tessellar phase diagram, whose structures reveal information about the invariance
and connecting orbits of φ.

Section 5.4.1 outlines the general recipe for computing a Morse pre-order and a
graded representation applied to parabolic flows. In order to make use of the algo-
rithm CONNECTIONMATRIX of [31], we also assume that we work with homology
over fields. Section 5.4.2 is specific to parabolic flows, and introduces parabolic
Betti numbers/homology using the lap number grading.

5.4.1. Computing Morse pre-orders and tessellar chain complexes. We di-
vide the computations into three appropriate steps: topologization, discretization
and algebraization. These steps use the tools of graph theory and computational
algebraic topology.8

5.4.1.1. Topologization. (a) The space of d-periodic sequences is a cube in Rd

and is given the standard metric topology. The block-flow topology given by a
parabolic flow is derived from the backward image operator as explained in Sec-
tion 5.3. The idea in Section 3 is to construct a pre-order that discretizes both the
metric topology as well as the block-flow topology. This is carried out such that
CW-discretization map cell : X ↠ X has the right continuity properties.

8These computations can be set up for a given skeleton using the open-source software package
PYCHOMP [33]. Of note is that the software is very efficient, and can calculate condensed Morse pre-
orders and connection matrices for examples of parabolic flows with |X| « 2.5 ˆ 1010, and |SC| «

6.2 ˆ 104, cf. [32]. More details on the software and algorithms, in addition to timing information for
computational experiments, can be found in [31, 32].
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5.4.1.2. Discretization. We breakdown discretization into steps (b)–(f); steps
(b)–(d) are represented in Fig.’s 5.1–5.2 and step (e) in Fig. 5.3.

(b) For parabolic flows we use specific discretizations that are compatible with
the braid classes for a given skeleton y, i.e., the top-cells XJ correspond to generic
braids given by GdX . For a given skeletal braid y P Dd

m that is stationary for φ
and for which ẙ is proper, the phase space is given by Equation (5.4). Following
the representation in Remark 5.11 we represent y in normal form9 which yields a
cubical CW-decomposition X with the appropriate number of cubes, q.v. Fig. 5.3.

(c) The top cells ξ P XJof the cubical CW-decomposition described in (a) cor-
respond to the subsets |ξ| Ă GdX of generic braids x rel y P Dd

1 rel y, cf. Sect. 5.3.1.
For the top cells we determine the symmetric adjacency relation eJĂ XJˆ XJ as
described in Section 5.3.2.

(d) For every generic braid diagram x rel y the crossing number λpx rel yq “

λpξq P N is well-defined and can be given as the crossing number λpξq of the
unique top cell representating x rel y. From the description in Section 5.3.2 we
obtain the generating relation ψJ Ă eJ for the condensed Morse pre-order ďJvia
pξ, ξ1q P ψJ if and only if λpξq ď λpξ1q.

(e) For the relation ψJ we compute the poset of strongly connected compo-
nents pSC,ďq. This can be done in time Op|XJ| ` |ψJ|q using Tarjan’s algorithm
[64].10 The elements S P SC correspond to discrete braid class components via
int |cl S|, where cl is closure in pX,ďq and int is interior in pX,T q.

(f) We use the formula for the map dyn: X ↠ SC given by Theorem 3.29
to reconstruct the pre-order pX,ď:q. The partial equivalence classes of ď: are
given by dyn´1S. Note that cl dyn´1S “ cl S. The difference between dyn´1S
and cl S is that the former is convex in pX,ď:q and thus locally closed in pX,ďq.
This implies that |dyn´1S| is locally compact, and that the Borel-Moore homology
is well-defined and can be computed via the cellular homology. The pre-order
pX,ď:q defines a Morse tessellation. The Morse tiles are given by the formula
|dyn´1S| “ GSX , cf. Eqn. (4.23). Having the pre-order pX,ď:q now establishes the
discretization map

X X SCcell

tile

dyn

which also induces a non-trivial grading of X .
5.4.1.3. Algebraization. The steps (a)–(f) yield the cubical CW-decomposition

X, the poset pSC,ďq and the map dyn: X ↠ SC.
(g) The CW-decomposition map cell : pX,T q ↠ pX,ďq together with the map

dyn: pX,ďq ↠ pSC,ďq form an SC-graded cell complex, cf. [31], which is the input
for the algorithm CONNECTIONMATRIX of [31].

9None of the results here are affected by choosing a normal form because all skeleta are homo-
topic, cf. [24].

10Note that without a condensed Morse pre-order it would take time Op|X| ` |ď:|q to compute
the poset SC.
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0
à

iPt6,8,10u

Z2xSiy
à

iPt0,1,3,4u

Z2xSiy 0,
d1

d1 “

¨

˚

˚

˚

˚

˚

˝

S6 S8 S10

S0 1 0 0

S1 0 0 1

S3 1 1 0

S4 0 1 1

˛

‹

‹

‹

‹

‹

‚

FIGURE 5.4. Graded tessellar differential module Ctile
pXq for the exam-

ple in Figure 5.1[left]. The differential dtile is computed using Z2 coeffi-
cients [right].

As output, we obtain the graded tessellar differential module CtilepXq, as de-
scribed in Section 4.4, cf. Fig. 5.4. In particular, we obtain the Borel-Moore ho-
mologies HBMpGSXq, and all Borel-Moore homologies are finitely generated. In
general the time complexity of this step is Op|X|3q, however in practice it is lin-
ear [32].

(h) Since the homology is computed over a field, i.e. K “ Z2, it is completely
described by its Betti numbers/Poincaré polynomials. We visualize the ensemble
of Morse pre-order and tessellar differential module by augmenting the Hasse dia-
gram for SC by providing the Borel-Moore Poincaré polynomials of the Morse tiles
GSX . This visualization of the tessellar phase diagram p>,ď:q in given in Figure
5.5, cf. Sect. 4.4.

S0 : µ0 S1 : µ0

S2 S3 : µ0 S4 : µ0 S5

S6 : µ1 S7 S8 : µ1 S9 S10 : µ1

S11 S12 S13 S14 S15 S16

S17 S18 S19 S20 S21 S22

S23 S24 S25 S26

S27 S28

FIGURE 5.5. Tessellar phase diagram for p>,ď
:
q for the example in Fig-

ure 5.1. The elements in pSC,ďq are labeled with the natural numbers.
Elements S P SC with trivial tessellar homology are indicated only by
label.

This structure is an algebraic and combinatorial description of the global dy-
namics of φ, encoding both the directionality and the invariance. We can also
display the tessellar differential (connection matrix data), although in practice we
regard this as a separate, queryable data structure which lives over the tessellar
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phase diagram. The pure tessellar phase diagram is obtained by the subposet of
vertices with non-trivial homology, cf. Fig. 5.6.

S0 : µ0 S3 : µ0 S4 : µ0 S1 : µ0

S6 : µ1 S8 : µ1 S10 : µ1

FIGURE 5.6. The pure tessellar phase diagram p>,ď
;
q for the example in

Figure 5.1.

5.4.2. Lap number grading and parabolic homology. From this point on we
use field coefficients R “ K. In the above calculations we compute the tessellar
homology associated with the discretization tile : X Ñ SC. The elements of SC
represent discretized braid class components and therefore the crossing number
λpSq P 2N is well-defined for all S P SC, i.e. we have an order-preserving map S ÞÑ
1
2λpSq. The latter may be regarded as a discretization map and will be denoted by
lap: SC Ñ N. This yields the following factorization

(5.11)

SC

X N
��

lap

//pb

??

tile

where pb: X Ñ N is the composition of tile and lap. By the same token as be-
fore the discretization lap yields an N-graded differential module/chain complex
`

Ctile,dtile
˘

and an N-grading of the tessellar homology Htile. Following the pro-
cedure in Section 4.2.3 we have:

DEFINITION 5.24. The scalar discretization lap: SC Ñ N yields a bi-graded
homology theory for Htile which is be denoted by

(5.12) H⃗p,qpXq :“ GpH
tile
q pXq, p, q P N,

and will be referred to as the parabolic homology.11

The parabolic homology is defined for all sets GU∖U1X , with U∖U1 convex in
pSC,ďq. In particular, if we restrict to the convex sets tSu in pSC,ďq we obtain

(5.13) H⃗p,qpGSXq “

#

HBM
q pGSXq for p “ lapGSX;

0 otherwise.

11The definition of the parabolic homology and the bi-grading uses the fact that we use field
coefficients. In general we only obtain bi-graded Betti numbers.
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For convex sets U∖ U1 Ă X we have:

P⃗λ,µpGU∖U1Xq “
ÿ

p,qPN

`

rank H⃗p,qpGU∖U1Xq
˘

λpµq

and Pλ,µ

`

CtesspGU∖U1Xq
˘

“
ř

SPU∖U1

ř

p,qPN
`

rank H⃗p,qpGSXq
˘

λpµq. The Morse
relation from Theorem 4.18 yield

(5.14)
ÿ

SPSC
P⃗λ,µ

`

GSX
˘

“ P⃗λ,µpXq `

8
ÿ

r“1

p1 ` λrµqQr
λ,µ,

with Qr
λ,µ ě 0.

The matrices below describe the tessellar differential with q and p grading
respectively for the skeleton y in Figure 5.1.

S0 S1 S3 S4 S6 S8 S10
¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

S0 1 0 0

S1 0 0 1

S3 1 1 0

S4 0 1 1

S6

S8

S10

S0 S1 S3 S4 S6 S8 S10
¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

S0 0 0 1 0 0

S1 0 0 0 0 1

S3 1 1 0

S4 0 1 1

S6

S8

S10

Using K “ Z2 the left matrix is dtile as chain complex boundary for CtesspXq “
À

qPt0,1u C
tile
q pXq, with

Ctile
0 pXq “

à

iPt0,1,3,4u

Z2xSiy, and Ctess
1 pXq “

à

iPt6,8,10u

Z2xSiy.

The right matrix is dtile as differential for the Z-graded vector space CtilepXq “
À

pPt0,1,2uGpC
tilepXq, with

G0C
tilepXq “

à

iPt0,1u

Z2xSiy, G1C
tilepXq “

à

iPt3,4u

Z2xSiy, G2C
tilepXq “

à

iPt6,8,10u

Z2xSiy.

Figure 5.4 depicts CtilepXq as chain complex and Figure 5.7 below depicts CtilepXq

the differential vector space. If we determine the parabolic homology of the sets

0
à

iPt6,8,10u

Z2xSiy
à

iPt3,4u

Z2xSiy
à

iPt0,1u

Z2xSiy 0

ˆ

1 1 0

0 1 1

˙ ˆ

0 0

0 0

˙

´

1 0 0

0 0 1

¯

FIGURE 5.7. The tessellar differential module Ctile
pXq with the terms of

the tessellar differential acting on the different groups GpC
tile

pXq, p “

0, 1, 2.

S P SC in Figure 5.1 we obtain a refinement of the reduced tessellar phase given
in Figure 5.8. To compute the bi-graded homology we use the spectral recurrence
procedure. To illustrate the lap number grading we start with computing H⃗p,qpXq
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for all p, q. Recall that GpX is a convex set and is the union of braid classes with
lap number p and FÓpX is the union of braid classes with lap number less or equal
to p. We compute the homologies from the chain complex pCtile,dtileq. We have
the following short exact sequences:

0 ÝÑ FÓ0C
tile
0

i0,0
ÝÝÑ FÓ1C

tile
0

j1,0
ÝÝÑ G1C

tile
0 ÝÑ 0;

0 ÝÑ FÓ1C
tile
0

i1,0
ÝÝÑ
–

FÓ2C
tile
0

j2,0
ÝÝÑ G2C

tile
0 ÝÑ 0;

0 ÝÑ FÓ1C
tile
1

i1,1
ÝÝÑ FÓ2C

tile
1

j2,1
ÝÝÑ G2C

tile
1 ÝÑ 0,

and the isomorphisms

FÓ0C
tile
0

j0,0
ÝÝÑ
–

G0C
tile
0 , FÓ1C

tile
1

j1,1
ÝÝÑ
–

G1C
tile
1 – 0, G2C

tile
0 – 0.

The vector spaces are generated by the non-trivial classes given in Figure 5.4. To
build the spectral sequence we have have page 1: E1

0,0 “ Htile
0 pG0Xq – Z2

2, E1
1,0 “

Htile
0 pG1Xq – Z2

2 and E1
2,1 “ Htile

1 pG2Xq – Z3
2, cf. Sect. 4.2.3. Furthermore, E1

0,1,
E1

1,0, E1
1,1, E1

2,2 and E1
p,q , for p, q ą 2, are trivial. The relevant spectral sequences

are:

0 ÝÑ E1
2,1

d1
2,1

ÝÝÑ E1
1,0 ÝÑ 0, 0 ÝÑ E1

2,1

d1
1,1

ÝÝÑ E1
1,0 ÝÑ 0,

where E1
1,1 “ 0 and d11,1 “ 0. The differential d12,1 can be determined from the

above data. From the the third short exact sequence above we have

¨ ¨ ¨ ÝÑ Htile
1 pFÓ1Xq

i1,1
ÝÝÑ Htile

1 pFÓ2Xq
j2,1

ÝÝÑ Htile
1 pG2Xq

k2,1
ÝÝÑ Htile

0 pFÓ1Xq ÝÑ ¨ ¨ ¨ ,

where k2,1 is the connecting homomorphism. The vector space E1
2,1 is given by

d1pUq : G2C
tile
1 Ñ G1C

tile
0 , where d1pUq, with U “ lap´12, is the zero matrix. Let

γ “ pa, b, cq P
À

iPt6,8,10u Z2xSiy be a cycle. Then, the inverse image under j2,1 is
the same element γ P FÓ2C

tile
1 . Apply dtile, i.e. d1γ “ pa, c, a ` b, b ` cq P FÓ1C

tile
0 ,

which is also the homology class inHtile
0 pFÓ1Xq. This calculation yields: k2,1 “ d1.

From the the first short exact sequence above we have

0 ÝÑ Htile
0 pFÓ0Xq

i0,0
ÝÝÑ Htile

0 pFÓ1Xq
j1,0

ÝÝÑ Htile
0 pG1Xq ÝÑ 0,

where the map j1,0 is given by pa, b, c, dq ÞÑ p0, 0, c, dq. The differential d12,1 is given
by d12,1 “ j1,0 ¨ k2,1 and

d12,1 “

˜

0 0 1 0

0 0 0 1

¸

¨

˚

˚

˚

˝

1 0 0

0 0 1

1 1 0

0 1 1

˛

‹

‹

‹

‚

“

˜

1 1 0

0 1 1

¸

: Z3
2 ÝÑ Z2

2.

The next page of the spectral sequence yields the vector spaces

E2
2,1 “ ker d12,1 – Z2, E

2
1,0 “

Z2
2

im d12,1
– 0, E2

1,1 “ 0, E2
0,0 –

Z2
2

im d11,1
– Z2

2.
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To complete the lap number grading of tessellar homology we compute the third
page of the spectral sequence. The remaining spectral sequence is

0 ÝÑ E2
2,1

d2
2,1

ÝÝÑ E2
0,0 ÝÑ 0,

where the differential d22,1 is computed as follows. From the theory of spectral
sequences we have that d22,1 “ j0,0 ¨ i´1

0,0 ¨ k2,1. Let γ “ pa, a, aq P E2
2,1, then k2,1γ “

pa, a, 0, 0q P E1
1,0 “ Htile

0 pF1Xq. Under i´1
0,0 we obtain i´1

0,0pa, a, 0, 0q “ pa, aq P

Htile
0 pFÓ0Xq. Since FÓ0Ctile

0

j0,0
ÝÝÑ
“

G0C
tile
0 the map j0,0 is the identity which implies

that d22,1 is given by pa, a, aq ÞÑ pa, aq P E2
0,0. This map is the restriction to E2

2,1 of
the map

rd22,1 “

˜

1 0 0

0 0 1

¸

: E1
2,1 ÝÑ E1

0,0.

Consequently, ker d22,1 “ 0 and thus E3
2,1 “ 0. Moreover, im d22,1 – Z2 and thus

E3
0,0 “

Z2
2

im d2
2,1

– Z2. The spectral sequence stabilizes at r ě 3 and we define

H⃗p,qpXq :“ Er
p,q , r ě 3. In particular,

H⃗p,qpXq “

#

Z2 for pp, qq “ p0, 0q;

0 for pp, qq ‰ p0, 0q,

and thus P⃗λ,µpXq “ 1. The same procedure can be carried out for other convex
sets in SC. If we apply the Morse relations in (5.14) for the skeleton y in Figure 5.1

S0 : λ0µ0

S3 : λ1µ0 S4 : λ1µ0

S1 : λ0µ0

S6 : λ2µ1 S8 : λ2µ1 S10 : λ2µ1

FIGURE 5.8. The pure tessellar phase diagram p>,ď
;
q with parabolic

Poincaré polynomials. The vertices are positions with height correspond-
ing to their lap numbers.

we obtain

Pλ,µpCtileq “ 2 ` 2λ` 3λ2µ “ 1 ` p1 ` λµq ¨ 2λ` p1 ` λ2µq ¨ 1,

which implies that Q1
λ,µ “ 2λ and Q2

λ,µ “ 1. This provides information about the
differentials d12,1 and d22,1 in the associated spectral sequence. Note that the sum of
the ranks of d12,1 and d22,1 equals the rank of dtile.
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REMARK 5.25. If we apply the Cartan-Eilenberg theory, and Theorem 4.7 in
particular, to the discretization pb: X Ñ Z given by the composition X

tile
ÝÝÑ

SC
lap

ÝÝÑ Z we obtain tessellar differential of the form:

dpb “

¨

˚

˝

E1
0,0 E1

1,0 E1
2,1

E1
0,0 0 0 rd22,1

E1
1,0 0 0 d12,1

E1
2,1 0 0 0

˛

‹

‚

This is exactly the tessellar boundary operator dtile as given in Fig. 5.4. The entries
of dpb can also be marked as drp,q . In this case d11,0 “ 0, d12,1 “ d12,1 and d22,1 “ rd22,1.

5.5. Differential modules and tessellar phase diagrams for positive braids

For a parabolic flow φ with a proper skeleton y, i.e. ẙ is proper, we obtained
a canonical Morse pre-order ď: via a CW-decomposition induced by y and the
parabolic recurrence relation R. The poset SC induced by y describes the Morse
tessellation of all discrete braid class components rxs rel y. The Cartan-Eilenberg
theory then provides an algebraic topological data structure that contains topo-
logical information about the braid class components (Morse tiles) and algebraic
information on how the classes are stitched together. We give a substantial exten-
sion of the results in [24] by showing that these data structures are invariants of
positive conjugacy classes of braids.

5.5.1. Some braid theory. Following [24, 65, 14] we recall some basic ideas
from braid theory. Let x P Dd

n be a discrete braid diagram. Generically strands in
x intersect with xαi ‰ xα

1

i , cf. Rmk. 5.3. To such generic braid diagrams x P Dd
n one

assigns a unique positive word β “ βpxq given by:

(5.15) x ÞÑ βpxq “ σα1 ¨ ¨ ¨σαℓ
,

where αk and αk ` 1 are the positions of intersection that intersect, cf. Rmk. 5.11.
The (algebraic) Artin braid group Bn is a free group spanned by them´1 generators
σα, modulo following relations:

#

σασα1 “ σα1σα, |α ´ α1| ě 2, α, α P t0, . . . , n´ 2u

σασα`1σα “ σα`1σασα`1, 0 ď α ď n´ 3.
(5.16)

Presentations of words consisting only of the σi’s (not the inverses) and the rela-
tions in (5.16) form a monoid which is called the positive braid monoid B`

n . Two pos-
itive words β and β1 are positively equal if they represent the same element in B`

n

by using the σ-relations in the braid group. Notation β `

“ β1. Two positive words
β, β1 are positively conjugate if there exists a sequence of words β0, ¨ ¨ ¨ , βℓ P B`

n ,
with β0 “ β and βℓ “ β1, such that for all k, either βk

`

“ βk`1, or βk ” βk`1, where
the latter is defined by

σα1
σα2

¨ ¨ ¨σαp
” σα2

¨ ¨ ¨σαp
σα1

,
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cf. [65, Sect. 2.2]. Notation β
`

„ β1. Positive conjugacy is an equivalence relation
on B`

n and the positive conjugacy class of β P B`
n is denoted by xβy. The set of all

positive conjugacy classes in B`
n is denoted by xB`

n y.

DEFINITION 5.26. Two discretized braids x, x1 P Dd
n are topologically equivalent

if βpxq and βpx1q are positively conjugate. Notation: x `

„ x1.

Recall that x „ x1 if and only if x, x1 P rxs. Clearly, x „ x1 implies x `

„ x1 which
defines a coarser equivalence relation on Dd

n. Denote the equivalence classes with
respect to `

„ by rxs `

„. The converse is not true in general, cf. [24, Fig. 8]. Following
[24, Def. 17], a discretized braid class rxs is free if rxs “ rxs `

„.

REMARK 5.27. For non-generic x P Dd
n we choose βpxq to be any representative

in the positive conjugacy class xβpx1qy, for any x1 „ x.

PROPOSITION 5.28 ([24], Prop. 27). If d ą λpxq, then rxs is a free braid class.

For the space of 2-colored discretized braid diagrams Dd
1,m there exists a nat-

ural embedding Dd
1,m ãÑ Dd

1`m by regarding x rel y as braid in Dd
1`m. Via the

embedding we define the notion of topological equivalence of two 2-colored dis-
cretized braids: x rel y

`

„ x1 rel y1 if they are topologically equivalent as braids in
Dd

1`m. The associated equivalence classes are denoted by rx rel ys `

„, which are not
necessarily connected sets in Dd

1,m. A 2-colored discretized braid class rx rel ys is
free if rx rel ys “ rx rel ys `

„. If d ą λpx rel yq, then rx rel ys is free by Proposition
5.28.

In Theorem 5.22 we showed that each partial equivalence class of pX,ď:q cor-
responds with braid class components rxs rel y of the fiber π´1pyq. The Borel-
Moore homology of rxs rel y is independent of the choice of parabolic recurrence
relations R for which Rpyq “ 0, cf. [24, Thm. 15(a)-(b)], and therefore the parabolic
homology is independent of R, i.e.

(5.17) H⃗p,q

`

rxs rel y;φ
˘

“ H⃗p,q

`

rxs rel y;φ1
˘

.

A similar statement holds for the braid classes rx rel ys. Let x rel y „ x1 rel y1 and
let φ and φ1 be parabolic flows with skeleton y and y1 respectively. Then,

(5.18)
à

rxs rel yĂ

π´1pyqXrx rel ys

H⃗p,q

`

rxs rel y;φ
˘

–
à

rx1s rel y1Ă

π´1py1qXrx1 rel y1s

H⃗p,q

`

rx1s rel y1;φ1
˘

cf. [24, Thm. 15(c)]. This makes the latter an invariant of the discrete 2-colored
braid class rx rel ys and justifies the notation:

(5.19) H⃗p,q

`

rx rel ys
˘

:“
à

rxs rel yĂ

π´1pyqXrx rel ys

H⃗p,q

`

rxs rel y;φ
˘

.

The homology H⃗p,q

`

rx rel ys
˘

is not necessarily independent of to the number
of discretization points d. In order to have independence also with respect to d,
another invariant for discrete braid classes was introduced in [24]. Consider the
equivalence class rx rel ys `

„ of discrete 2-colored braid diagrams induced by the
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relation x rel y `

„ x1 rel y1 on Dd
1,m. As before the projection π : Dd

1,m Ñ Dd
m given by

x rel y ÞÑ y yields the fibers π´1pyq and components rxs rel y Ă π´1pyq X rx rel ys `

„

and defines the homology:

(5.20) H⃗p,q

`

rx rel ys `

„

˘

:“
à

rxs rel yĂ

π´1pyqXrx rel ys `
„

H⃗p,q

`

rxs rel y;φ
˘

.

Note that if d ą λpx rel yq then the homology in (5.20) corresponds to the homol-
ogy in (5.19). As before H⃗p,q

`

rx rel ys `

„

˘

is an invariant and does not depend on the
choice of φ and y. In the next section we explain the invariance by investigating
the dependence on the number of discretization points d making it a topological
invariant for relative braid classes.

The braid class components rxs rel y comprise the elements of SC and the
equivalence relation `

„ yields a span which we express in terms of tessellar phase
diagrams

pX,ď:q p>,ď:q >,ď;q

p>pyq,ďq p>pyq,ďq

where p>pyq,ďq is the coarsening of p>,ď:q defined by unionizing equivalent pairs
rxs rel y, rx1s rel y Ă π´1ppq X rx rel ys `

„ whenever rxs rel y
`

„ rx1s rel y and tak-
ing transitive, reflexive closure. The equivalence classes are parallel in > and thus
the coarsening yields a well-defined poset p>pyq,ďq. The poset p>pyq,ďq is the re-
striction of pairs in >pyq for which the Poincaré polynomials that are the non-zero.
The elements of >pyq can be identified with rx rel ys `

„. By defining the groups in
(5.19) we consider convex sets in SC. Therefore, the differential dtile yields a in-
duced differential dpara on the groups H⃗p,q

`

rx rel ys `

„

˘

. This leads to the following
definition:

DEFINITION 5.29. Let y P Dd
m be a proper discrete braid. Define the differential

module12

(5.21) CparapXq :“
à

rx rel ys `
„

à

p,q

H⃗p,q

`

rx rel ys `

„

˘

, dpara : CparapXq Ñ CparapXq.

where dpara is the induced differential for pX,ď:q. The non-trivial homologies
H⃗p,q

`

rx rel ys `

„

˘

‰ 0 yield an >pyq-grading of CparapXq. The >pyq-graded differen-
tial module A “ A pyq :“

`

Cpara,dpara
˘

is called the parabolic differential module for
y.

Convex sets in >pyq yield convex sets in >pyq, i.e. Cop>pyqq ãÑ Cop>pyqq
13 via

convex hull: if I P Cop>pyqq, then the convex hull xIy is contained in Cop>pyqq.
This implies that CparapXq is well-defined over every convex set in Cop>pyqq. By

12We use the term differential module even though we use field coefficients which makes A a
differential vector space.

13Recall that for a poset pP,ďq the lattice of convex sets in P is denoted by CopPq, cf. [6].
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construction the homology is given by HpA q – K. The grading by lap number
is a first Z-grading. The dimension grading of Borel-Moore homology comes as a
second Z-grading for A . This yields the bi-graded homology H⃗p,qpA q.

REMARK 5.30. For most of the examples in this paper the partial order on A

is given by >, i.e. > – >pyq. In general this holds for d large enough.

REMARK 5.31. In general there does not exist an order-retraction > ↠ >, cf.
[40]. If such an order-retraction exists one obtains the discretization pX,ď:q ↠

p>,ď:q ↠ p>,ď;q for which all tiles have non-trivial tessellar homology. It is not
clear if this behaves well under stabilization. The same question applies to >pyq

and >pyq. In the case of parabolic homology the remedy is two use the bi-grading
and the order given by >pyq.

Figure 5.9 below shows a representation of A pyq for the discrete skeletal braid
y displayed in Figure 1.5. The advantage of this representation is that the >pyq-
grading is expressed in the diagram. Contracting to lap numbers yields the dia-
gram in Figure 1.7.

Z2xS8y Z2xS5y Z2xS1y

0 Z2xS9y Z2xS6y Z2xS3y Z2
2xS2y 0

Z2xS7y Z2xS4y Z2xS0y

p1q p1q

˜

0

1

¸

p1q

p1q

p0q

p0q

˜

0

0

¸

p1 0q

p1 0qp1q p1q

FIGURE 5.9. The diagram displays the lap number grading as well as the
>-grading of A pβq. The Z2-groups are the parabolic homologies H⃗p,qpSjq

5.5.2. Stabilization. In order to formulate the main results of this section we
recall some definitions and methods from [24]. For a skeleton y P Dd

m we define
the extension operator E : Dd

m Ñ Dd`1
m as:

pEyqαi :“

#

yαi for i “ 0, ¨ ¨ ¨ , d,

yαd for i “ d` 1.

For a given braid class rx rel ys extension does not change any of the properties,
i.e. rEx rel Eys is both bounded and non-degenerate. The same remains true under
repeated application of the operator E. The main result in [24, Thm. 20] states that
the Borel-Moore homology of rx rel ys `

„ remains unchanged under application of
E. For the parabolic homology this implies:

THEOREM 5.32. Let rx rel ys `

„ be a relative braid class then

(5.22) H⃗p,q

`

rEx rel Eys `

„

˘

– H⃗p,q

`

rx rel ys `

„

˘
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PROOF. The lap number does not change under the extension operator E, i.e.
lap

`

rEx rel Eys `

„

˘

“ lap
`

rx rel ys `

„

˘

, where the latter is defined as the lap number
of is braid class fibers. Since the Borel-Moore homologies are isomorphic by [24,
Thm. 20] Equation (5.13) implies that the parabolic homologies are isomorphic.

□

By Proposition 5.28 rx rel ys a relative braid class is free if d is sufficiently large
and thus rEℓx rel Eℓys is free for ℓ ě 0 sufficiently large. Let x rel y

`

„ x1 rel y1, then
Eℓx rel Eℓy

`

„ Eℓx1 rel Eℓy1 and both are contained in the same connected compo-
nent rEℓx rel Eℓys `

„. By Equation (5.18) this implies that H⃗p,q

`

rEℓx rel Eℓys `

„

˘

–

H⃗p,q

`

rEℓx1 rel Eℓy1s `

„

˘

. Combining these isomorphisms gives

H⃗p,q

`

rx rel ys `

„

˘

– H⃗p,q

`

rEℓx rel Eℓys `

„

˘

– H⃗p,q

`

rEℓx1 rel Eℓy1s `

„

˘

– H⃗p,q

`

rx1 rel y1s `

„

˘

,

which establishes H⃗p,q

`

rx rel ys `

„

˘

as a topological invariant for relative braid
classes. The proof of [24, Thm. 20] is based on a singular perturbation argument
for parabolic recurrence relations. We use the same technique now to show that
the graded differential module A pyq is also invariant under extension by E:

THEOREM 5.33. Let y P Dd
m be a proper discrete braid. Then,

(5.23) A pEyq – A pyq.

In particular, the grading is given by >pEyq – >pyq.

PROOF. We will outline the main steps in the proof and indicate the additional
results that can be obtained from this method. In order to accommodate the ex-
tension operator E acting on discrete braids we consider the parabolic recurrence
relation Rϵ defined as Rϵ

i “ Ri for i “ 0, ¨ ¨ ¨ , d ´ 1 and Rϵ
d “ ϵ´1pxd`1 ´ xdq, and

R0 “ R0px0, x1q. For ϵ ą 0 the parabolic flow is denoted by φϵ on the augmented
phase space rX , with rx P rX given by rx “ px0, ¨ ¨ ¨ , xdq “ px, xdq. In the singular
limit φ0 “ Eφ is the induced parabolic flow on EX . Consider the coordinates px, zq

with z “ xd`1 ´ xd “ x0 ´ xd. With the reparametrization of time by τ “ t{ϵ we
obtain the differential equations:

(5.24)
x1 “ ϵXpx, zq;

z1 “ ´z ` ϵZpxq,

whereXpx, zq andZpxq are given by: Xipxq “ Ripxi´1, xi, xi`1q, with i “ 0, ¨ ¨ ¨ , d´

2, Xd´1px, zq “ Rd´1pxd´2, xd´1, x0 ´ zq and Zpxq “ R0px0, x1q. The associated
flow on rX is denoted by φϵ.

As for φ consider φϵ with skeleton Ey defined on the compact phase space rX .
The construction in Section 5.3 of the Morse pre-order for φϵ follows by the same
token as before and we denote the Morse pre-order by p rX,ď:ϵq. The poset of partial
equivalence classes is denoted by pSCϵ,ďϵq. For ϵ ą 0 we obtain a tessellar phase
diagram p>ϵ,ď

:
ϵq and a pure tessellar phase diagram p>ϵ,ď

;
ϵq. Since the diagrams
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only depend on topological data they are independent of ϵ ą 0. The results in [24]
imply that for every fiber π´1pyqXrx rel ys `

„ in Dd
1,m and π´1pEyqXrEx rel Eys `

„ in
Dd`1

1,m the Borel-Moore homologies are the same, cf. Thm. 5.32. The tessellar phase
diagrams associated to the non-trivial homologies are denoted >pEyq and >pEyq. It
also follows that for all classes in rrxs relEy Ă π´1pEyq for which π´1pEyqXEX “ ∅
the Borel-Moore homology is trivial, cf. [24, Rmk. 23]. These are exactly the classes
that emerge when we extend via the operator E. Indeed, if the maximal invari-
ant set Invprrxs rel Eyq ‰ ∅ then the convergence properties of (5.24), cf. [24, Lem.
22], imply that there is a non-trivial invariant set for ϵ “ 0, which contradicts the
fact that π´1pEyq X EX “ ∅. The pure tessellar phase diagram >pEyq obtained
from >pEyq remains unchanged since the non-trivial since a braid class rx rel ys `

„

has non-trivial homology if and only if rEx rel Eys `

„ has non-trivial homology.
The partial order also remains unchanged. Indeed, by the above construction
p>,ď:q ãÑ p>ϵ,ď

:
ϵq and thus two elements in >pyq are ordered if and only if they

are ordered in >pEyq, which proves that the pure tessellar phase diagram is invari-
ant under the action of E. By the same token the invariance of the homologies for
convex sets in >pyq are non-trivial if and only the homologies of the associated con-
vex sets in >pEyq are non-trivial. By the nature of the induced connection matrix
dpara the homology braids are isomorphic and therefore the differential on Cpara

for Ey can be chosen to be the same all ϵ ě 0. These facts combined prove the
theorem. □

The final result is to prove that the parabolic differential module is in fact an
invariant of positive conjugacy classes of braid diagrams.

THEOREM 5.34. The parabolic differential module A pβq of a (topological) positive
braid β is a positive conjugacy class invariant.

PROOF. Let x rel y P Dd
1,m and x1 rel y1 P Dd1

1,m be relative braids such that
βpx rel yq

`

„ βpx1 rel y1q. By Proposition 5.28 we have that Eℓx relEℓy „ Eℓ1

x relEℓ1

y1

for ℓ` d “ ℓ1 ` d1 and ℓ, ℓ1 sufficiently large. This implies

H⃗p,q

`

rx rel ys `

„

˘

– H⃗p,q

`

rEℓx rel Eℓys `

„

˘

– H⃗p,q

`

rEℓ1

x1 rel Eℓ1

y1s `

„

˘

– H⃗p,q

`

rx1 rel y1s `

„

˘

,

and therefore A pyq – A py1q. This justifies the notation A pβq :“ A pyq with β “

βpyq. □

Since A pβq is an invariant for a positive braid β the associated reduced tes-
sellar phase is denoted by

`

>pβq,ď
˘

. From the tessellar phase diagram we can
immediately derive the Poincare polynomial P⃗λ,µpA q by summing up the term
P⃗λ,µ in the tessellar phase diagram.

5.5.3. An example. For the skeletons y we use in this paper the strands y´

and y` do not intersect with the remaining strands in ẙ, nor do they intersect
with x. For that reason the convention is to label the basic words in Bm by σ´
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(intersections between y´ and y1), σα, α “ 1, ¨ ¨ ¨ ,m ´ 3 (intersections between
yα and yα`1), and σ` (intersections between ym´2 and ym´1). This implies that
the words βpyq in our setting consists only of the letters σ1, ¨ ¨ ¨ , σm´3 and maybe
regarded as a word βpẙq P B`

m´2.
In the examples below the words β are understood to be words βpẙq P B`

m´2.
We compute the parabolic module A pβq and the pure tessellar phase diagrams for
various positively conjugate representation of the braid β “ σ2

1pσ2σ1q2 P B`
3 .

LEMMA 5.35. β `

„ σ5
1σ2.

PROOF. From the braid group relations and positive conjugacy we have:
β “ σ2

1pσ2σ1q2 “ σ2
1σ2σ1σ2σ1

`

“ σ3
1σ2σ

2
1

`

„ σ5
1σ2. □

FIGURE 5.10. Three graphical representatives of positively conjugate
braids whose words βpẙq are given by σ2σ

2
1σ

2
2σ1, σ2

1pσ2σ1q
2 and σ5

1σ2

respectively.

LEMMA 5.36. β `

„ σ2σ
2
1σ

2
2σ1.

PROOF. As before: β “ σ2
1σ2σ1σ2σ1

`

“ σ2
1σ

2
2σ1σ2

`

„ σ2σ
2
1σ

2
2σ1. □ □

Figure 5.10 depicts the three presentations of the braids conjugate to β (in-
cluding β). The presentation σ2σ

2
1σ

2
2σ1 has the minimal number of discretiza-

tion points. The braid σ2σ
2
1σ

2
2σ1 can be represented in D3

5 , the braid σ2
1pσ2σ1q2

in D4
5 and σ5

1σ2 in D5
5 . Figure 5.12 below shows the tessellar phase diagrams of

σ2σ
2
1σ

2
2σ1 and σ2

1pσ2σ1q2 for d “ 3 and d “ 4 respectively. As expected the tessel-
lated phase diagrams are not isomorphic since y P D4

5 allows more relative braid
classes. However, if we reduce the tessellated phase diagrams to only those with
non-trivial Borel-Moore homology we obtain isomorphic posets >

`

σ2σ
2
1σ

2
2σ1

˘

–

>
`

σ2
1pσ2σ1q2

˘

. Moreover the associated parabolic modules A for σ2σ2
1σ

2
2σ1 and

σ2
1pσ2σ1q2 are isomorphic, cf. Thm. 5.34.

0 Z2xS15y Z2xS13y Z2xS8y Z2xS4y ‘ Z2xS0y 0

´

1

¯ ´

0

¯

¨

˝

1

1

˛

‚

FIGURE 5.11. The parabolic differential module A pβq, computed over
Z2 coefficients, represented as chain complex.
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If we apply the Morse relations in (4.17) we obtain

P⃗λ,µpA q “ 2 ` λ2µ` λ3µ2 ` λ4µ3 “ 1 ` p1 ` λµq ¨ λ3µ2 ` p1 ` λ2µq ¨ 1,

which implies that Q1
λ,µ “ λ3s2 and Q2

λ,µ “ 1. This provides information about
the differentials d14,3 and d22,1. A straightforward but meticulous verification of
the Morse relations in (4.17) show that the choices for Q1 and Q2 are unique. The
ranks of d14,3 and d22,1 correspond to the ranks of the connection matrix dtile.

S0 : λ0µ0 S1 : λ0µ0

S10 : λ2µ1

S13 : λ3µ2

S14 : λ4µ3

S0 : λ0µ0 S1 : λ0µ0

S11 : λ2µ1

S15 : λ3µ2

S18 : λ4µ3

FIGURE 5.12. Tessellar phase diagrams for β “ σ2σ
2
1σ

2
2σ1 [left] and β “

σ2
1pσ2σ1q

2 [right]. The posets SC for both examples are different but the
posets >

`

σ2σ
2
1σ

2
2σ1

˘

and >
`

σ2
1pσ2σ1q

2
˘

are isomorphic.



CHAPTER 6

Postlude

In this section we will address open questions and directions for further re-
search based on the ideas in this text.

6.1. Topologization

In this section we comment on the general scheme of modeling dynamics as
topology.

6.1.1. Variations on flow topologies. If we consider the τ -forward-image op-
erator Γ`τ by considering forward images from t ě τ ą 0 we obtain a derivative
operator which is variation on Γ`. The derivative Γ`τ is not idempotent in general.
The fixed points of Γ`τ comprise the invariant sets of φ. The same can be done
for p´τq-backward images which yields the operators Γ´´τ . As for the block-flow
topology we can also consider operators Γ´τ

‚ :“ Γ´´τcl and the topologies T ´τ
‚ ,

which are refinements of T ´
‚ . A different class of flow topologies can be derived

by composing closure and forward image in reversed order, e.g. Γ‚
´τ :“ cl Γ´´τ

is a derivative operator on SetpXq, and associated topologies T ‚
´ and T ‚

´τ . If φ is
continuous then Γ‚

τ defines a derivative operator on SetpXq. The τ -forward im-
age derivative can be used to define the omega limit set operator ΓωU :“ ωpUq.
A flow topology of particular interest is based on omega limit sets. Since ωpUq is
forward invariant and closed it holds that ωpωpUqq Ă ωpUq. In addition, ω is a
additive and ωp∅q “ ∅, which proves that ω defines the derivative operator Γω

on SetpXq. Therefore, U ÞÑ clωU :“ U Y ΓωU is a closure operator and thus de-
fines the topology Tω on X . Sets U Ă X that are open in T and closed on Tω

are exactly open attracting neighborhoods. It is sometimes convenient to consider
trapping regions instead of attracting blocks. This can be achieved the operator:
U ÞÑ cl`ωU :“ U Y Γ`U Y ΓωU.

6.1.2. Dynamical systems in the large. The flow topologies T ` and T ´ and
the derived flow topologies such as T ´

‚ and T ‚
´ inherit properties of the semi-

flow φ at hand. For example if φ is trivial1 then T ´
‚ “ T ‚

´ “ T , and if X allows
a dense flow φ then for instance T 0 is the trivial topology. In general, the flow
topologies are not Hausdorff, independent of T . A natural question to ask is
which topologies are manifested as a derived flow topologies. In this setting we
can think of a dynamical system in larger terms as a relation on X . This raises a

1i.e. φpt, xq “ x for all x P X and for all t ě 0.
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deeper question whether we can equivalently study certain aspects of dynamical
systems in the large as bi-topological spaces and bi-closure algebras. For the latter
closure operators serve as a generalization of a dynamical system.

6.1.3. Beyond semi-flows. Most of the considerations in this paper carry over
to discrete time dynamical systems such as iterating a map in X , cf. Remark 3.9.
Another aspect that has played a minor role in the construction in this paper is
the continuity of the dynamics with respect to the phase variable x. Finding dis-
cretizations, Morse pre-orders and Morse tessellation does not require continu-
ity. The one instance where continuity plays a role is tying invariant dynamics
to Morse tessellations. The latter uses algebraic topology and Wazewski’s princi-
ple to conclude that non-trivial Borel-Moore homology yields non-trivial invari-
ant dynamics. In particular, Wazewski’s principle crucially uses the continuity of
φ. For discrete time systems one can use a different notion of Conley index, cf.
[58, 54, 57, 18].

6.2. Discretization

In terms of discretization, there are many intersetions with finite and combi-
natorial topology.

6.2.1. Quasi-isomorphic discretization and finite topologies. In practice (in-
deed, for all of the examples in this paper) the map disc : pX,T q Ñ pX,ďq is a
quasi-isomorphism, i.e. induces an isomorphism HpXq – HpX,ďq, where the lat-
ter is taken to be the singular homology of the finite topological space. In this case,
as per Remark 4.26, one can discard disc and compute the graded tessellar complex
CpartpXq from part : X Ñ P directly. This turns on the singular homology of pX,ďq

being easy to understand, which is often the case, e.g., disc is a CW-decomposition
map. More generally, the singular homology of a finite topological space can
be understood through a theorem of M. McCord [50], which says that there is a
simplicial complex (the order complex) KpXq and a weak-homotopy equivalence
k : |KpXq| Ñ X. This can be used to induce a new map partk : KpXq

k
ÝÑ X Ñ P and

form a graded chain complex CpartkpKpXqq. As k is a weak homotopy equivalence
(thus a quasi-isomorphism) CpartkpKpXqq has an isomorphic homology braid to
CpartpXq. This provides another route for computation, and the role that finite
topologies play seems worth examining.

6.2.2. Semi-conjugacies and finite models. A (bi-topological) discretization
map disc : pX,T ,T ´

‚ q ↠ pX,ď,ď0q is analogous to a semi-conjugacy in that one
has a model system onto which the system of interest is mapped. There are situa-
tions in which it could be of interest to construct a semi-conjugacy of the semi-flow
φ. The work of [49] provides results in this direction. If SC obeys a particular con-
dition 2 and further conditions on the Conley indices and connection matrix dtile

2Namely, what [7] terms a CW-poset, i.e. the face partial order of a regular CW complex.
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are met,3 then one can construct a surjective semi-conjugacy from X to |KpSCq|,
the order complex associated to SC. Given that our starting point is tile, rather
than the CtilepXq itself, one has more data than assumed in [49] (in which only the
nature of Conley indices and dtile is known), and it seems reasonable that these
assumptions could be weakened.

6.3. Algebraization

There are further refinements and generalizations of the homological algebraic
techniques we use to build algebraic models of dynamics.

6.3.1. Grading tessellar homology. In Remark 4.2.3 we explained via spectral
sequences that one obtains a P-grading on tessellar homology in the case that P is
a linear order. Applying this idea in the setting of parabolic recurrence relations
yields the bi-graded parabolic homology. Via the bi-grading we obtain refined
information about invariant sets for parabolic flows and connections between in-
variant sets. We have not fully explored the case of arbitrary partial orders P is
this setting, i.e. grading tessellar homology by an arbitrary partial order. To do so
we need to explore the theory of spectral systems, cf. [48]. The grading related to
dynamics is denoted by p and the grading related to topology by q. In some case it
is beneficial to disregard the q-grading and only consider the dynamical grading
p.

6.3.2. Exact couple systems. In [48] Matschke introduces exact couple sys-
tems as a generalization of Massey’s exact couples which allows generalizing spec-
tral sequences to spectral systems. In Section 4.1 we discuss Franzosa’s theory of
connection matrices in terms of exact couple systems and Cartan-Eilenberg sys-
tems, cf. [63].

6.4. Braid and knot invariants

The application of discretization techniques to braids opens the door for in-
vestigating invariants in more general contexts.

6.4.1. Braid Floer homology. In Section 5.5 we discuss an invariant for posi-
tive conjugacy classes of braid in terms of a poset graded differential module. Our
techniques in this paper use parabolic flows which restrict to positive braid dia-
grams and positive conjugacy. The general problem of braids is addressed in [66]
and defines invariants for relative braid classes x rel y via Floer homology. One
of the main results in [66] is that the homology invariants are isomorphic to the
Floer homology of positive braids via Garside’s normal form for braids. The lat-
ter makes that the Floer homology invariants for relative braids can be computed

3Termed H0-H3 in [49], these conditions ensure that CtilepXq ‘looks-like’ the Morse complex of
a gradient flow. Some of the braid examples from this text, after appropriate modification à la [40],
satisfy these assumptions.
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from the discrete invariants introduced in Section 5.5. The problem of formulat-
ing a differential module invariant in the general case for braids based on Floer
homology is much harder. An extension of the results in [66] is to define a differ-
ential module for braids and show that it is an invariant of conjugacy classes of
braids. A natural next step is to investigate the link to the discrete case in order
to compute the differential module invariants. Another question in this setting is
to understand how Markov moves impact the braid invariants which is important
for investigating its relation with knot invariants.

6.4.2. Some immediate applications of the parabolic differential module.
The theory of parabolic recurrence relations has been successfully applied to scalar
parabolic differential equations of the type

ut “ uxx ` gpx, u, uxq.

cf. [25]. A collection of stationary solutions to the above equation is regarded as
a continuous, positive braid β. As in the discrete case one may consider various
relative braids α rel β. In particular, when α represents a single strand braid the
analogy with the discrete theory is obtained by representing α rel β as a piecewise
linear braid x rel y. The results in [25] make A pβq also an invariant for the above
parabolic equation. The reduced tessellar phase diagram >pβq yields stationary
solutions for every vertex in >pβq. Moreover, in Conley index theory the boundary
operator dpara contains information about connecting orbits between stationary
solutions, cf. [25, 65]. The highlight of the discrete theory is insight into the infinite
dimensional Morse theory for the above parabolic equation.

The reduced tessellar phase diagram given by A pβq as provides detailed in-
formation about periodic points of surface diffeomorphism and diffeomorphisms
of the 2-disc in particular. In [14] mapping classes of diffeomorphisms of the 2-disc
are related to braids and positive braids in particular. To obtain a forcing theory
for additional periodic points the Conley indices of braids α rel β is computed. As
in the previous example the reduced tessellar phase diagram given by A pβq forces
new periodic points.



APPENDIX A

Binary relations and operators

In this appendix we summarize some elementary facts on binary relations and
operators relevant for this text. We use [60] as are main reference for the theory of
binary relations and [29] for operators.

A.1. Binary relations

Let X,Y be point sets. A binary relation is a subset ϕ Ă X ˆ Y . If X “ Y ,
then ϕ Ă X ˆ X is called an endorelation, or homogeneous (binary) relation on
X . The top relation X ˆ Y is denoted by J and the bottom relation ∅ by K. The
identity is the diagonal id “ tpx, xq | x P Xu. The opposite relation, or inverse relation
is denote by ϕ´1 “ tpy, xq | px, yq P ϕu Ă Y ˆ X . The complement ϕc is defined
as ϕc :“ tpx, yq | px, yq R ϕu, which is the set-complement of ϕ. Some obvious
properties are:

(i) pϕ´1q´1 “ ϕ;
(ii) pϕ´1qc “ pϕcq´1;

(iii) ϕ Ă ψ if and only if ϕ´1 Ă ψ´1 if and only if ϕc Ą ψc;
(iv) pϕY ψq´1 “ ϕ´1 Y ψ´1 and pϕX ψq´1 “ ϕ´1 X ψ´1;
(v) pϕY ψqc “ ϕc X ψc and pϕX ψqc “ ϕc Y ψc — De Morgan’s laws.

An important operation on relations is composition: given ϕ Ă X ˆ Y and ψ Ă

Y ˆ Z, then

ψ ¨ ϕ :“
␣

px, zq | px, yq P ϕ and py, zq P ψ for some y P Y
(

Ă X ˆ Z.

Some additional properties:

(vi) pψ ¨ ϕq´1 “ ϕ´1 ¨ ψ´1;
(vii) ϕ Ă ϕ ¨ ϕ´1 ¨ ϕ and ϕ´1 Ă ϕ´1 ¨ ϕ ¨ ϕ´1.

The set of all binary relations on X ˆ Y is the power set SetpX ˆ Y q, which is a
complete and atomic Boolean algebra. In particular, for any S Ă SetpX ˆ Y q:

(A.1)
ď

ϕPS

ϕ :“ sup
␣

ϕ P S | S Ă SetpX ˆ Y q
(

,

is a well-defined relation in SetpX ˆ Y q. The same applies the infima:

(A.2)
č

ϕPS

ϕ :“ inf
␣

ϕ P S | S Ă SetpX ˆ Y q
(

,

is a well-defined relation in SetpX ˆ Y q.
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A binary relation ϕ is left total if for all x P X there exists an y P Y such that
px, yq P ϕ. A binary relation ϕ is right total, or surjective if for all y P Y there exists
an x P X such that px, yq P ϕ, i.e. ϕ´1 is left total. Composition with the opposite
relation yields the following properties:

(viii) ϕ is left total if and only if id Ă ϕ´1 ¨ ϕ;
(ix) ϕ is right total if and only if id Ă ϕ ¨ ϕ´1.

Binary relations come with many different properties. In this text partial orders
and pre-orders are special cases of homogeneous binary relations on X that play
a pivotal role in the theory. For convenience we now consider homogeneous rela-
tions on X . Instead of using the latter terminology we will refer to homogeneous
binary relations as binary relations on X , which are elements of the Boolean alge-
bra SetpX ˆXq. A selection of special properties of binary relations on X are:

- reflexive if id Ă ϕ;
- irreflexive if id Ă ϕc;
- symmetric if ϕ “ ϕ´1;
- asymmetric if ϕ´1 Ă ϕc, i.e. px, yq P ϕ implies py, xq R ϕ;
- anti-symmetric if ϕX ϕ´1 Ă id, i.e. px, yq P ϕ and py, xq P ϕ implies x “ y;
- transitive if ϕ2 Ă ϕ, i.e. px, yq, py, zq P ϕ implies that px, zq P ϕ;
- dense if ϕ Ă ϕ2, i.e. for every px, yq P ϕ there exists a z P X such that

px, zq, pz, yq P ϕ.

In particular, every reflexive relation is dense and both left and right total. With
the above properties one can indicate a number of common binary relations on X .
A binary relation ϕ on X is a(n):

- pre-order if ϕ is reflexive and transitive, i.e. id Ă ϕ and ϕ2 “ ϕ;
- partial order if ϕ is reflexive, anti-symmetric and transitive, i.e. id Ă ϕ,
ϕX ϕ´1 Ă id and ϕ2 “ ϕ;

- strict partial order if ϕ is irreflexive and transitive, which is equivalent to
asymmetric and transitive;

- linear order, or total order if ϕ is a partial such that px, yq P ϕ, or py, xq P ϕ

for all pairs px, yq P X ˆY (the last conditions equivalent to ϕYϕ´1 “ J);
- equivalence relation if ϕ is reflexive, transitive and symmetric.

For a binary relation on X we use different notations: px, yq P ϕ, which is equiv-
alent to xϕ y. In particular for partial orders and pre-orders we write x ď y, or
x ďϕ y. For equivalence relations we use x „ y, or x „ϕ y. Given a partial or-
der we can write the associated strict order and vice verse, i.e. given a partial
order ϕ, then ϕ‚ :“ ϕ X idc is the associated strict partial order, and given a strict
partial order ψ, then ψ‚ :“ ψ Y id is the associated partial order. This yields the
correspondences:

pϕ‚q
‚ “ ϕ, pψ‚q‚ “ ψ.

A Hasse relation, or Hasse diagram for a partial order ϕ is defined as:

ϕH :“ ϕ‚ X pϕ2‚q
c,
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and corresponds to the usual notion of Hasse diagram for partial orders on a finite
set X . Transitive reflexive closure, which we now explain, of the Hasse relation
retrieves the partial order.

Given a binary relation ϕ on X , then its transitive closure is defined as

ϕ`̀̀ :“ inf
␣

ψ Ă X ˆX | ϕ Ă ψ, ψ2 Ă ψ
(

“
ď

kě1

ϕk.

The notion of transitive reduction only makes sense for finite sets X but is not well-
defined for infinite sets in general. The transitive reflexive closure is defined as

ϕ`̀̀“““ :“ inf
␣

ψ Ă X ˆX | id Y ϕ Ă ψ, ψ2 Ă ψ
(

“
ď

kě0

ϕk.

The transitive reflexive closure ϕ`̀̀“““ of a binary relation ϕ is pre-order on X . Via
reflexive closure ϕ“““ :“ id Y ϕ we have that ϕ`̀̀“““ “ id Y ϕ`̀̀ . Reflexive reduction is
defined for all binary relations and is given as ϕ‰‰‰ :“ ϕ X idc. Finally, the strongly
connected components of a binary relation onX are given by the equivalence relation

(A.3) ϕSC :“ ϕ`̀̀“““ X
`

ϕ`̀̀“““
˘´1

,

whose equivalence classes are the strongly connected components of ϕ. The latter
is of particular importance for binary relations on finite sets (digraphs), cf. Rem.
2.24. The pre-order ϕ`̀̀“““ yields a partial order on the strongly connected compo-
nents, cf. App. B.1 (ordered tessellations).

A.2. Modal operators

Related to binary relations ϕ Ă X ˆ Y is the notion of operator on the algebra
of subsets of X and Y . Let ϕ Ă X ˆY be a binary relation. Then, for U Ă X define

ϕU :“
␣

y P Y | px, yq P ϕ for some x P U
(

“
ď

xPU

ϕx Ă Y,

where ϕx “
␣

y P Y | px, yq P ϕ
(

. By definition ϕ∅ “ ∅ and ϕpU Y U 1q “ ϕU Y

ϕU 1, which show that ϕ regarded as operator is a modal operator from SetpXq to
SetpY q. In this text the operators are mostly from SetpXq to SetpXq. The following
properties follow from the definition of operator:

(i) ϕ
`
Ť

iPI Ui

˘

“
Ť

iPI ϕUi;
(ii) ϕ

`
Ş

iPI Ui

˘

Ă
Ş

iPI ϕUi, both for arbitrary families tUiuiPI of subsets in X .

The modal operator defined by a binary relation are completely additive. The
opposite relation ϕ´1 regarded as operator is related to ϕ as operator in a similar
way as the inverse function to a function. First of all (i)-(ii) also holds for ϕ´1 as
operator. Moreover,

(iii) U X ϕ´1Y Ă ϕ´1
`

ϕU
˘

, for all U Ă X ;
(iv) V X ϕX Ă ϕ

`

ϕ´1V
˘

, for all V Ă Y .

REMARK A.1. If ϕ is left total then A.2(iii) corresponds to A.1(viii), and A.2(iv)
corresponds to A.1(ix). Note that if V “ ϕU in A.2(iv), then the identity A.1(vii) is
satisfied. The same holds for A.2(iii).
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To prove (iii) and (iv) we argue as follows. The set ϕ´1Y “
␣

x P X | py, xq P

ϕ´1 for some y P Y
(

“
␣

x P X | px, yq P ϕ for some y P Y
(

is the domain X for
which ϕx ‰ ∅. Futhermore,

ϕU “
␣

y P Y | px, yq P ϕ for some x P U
(

“
␣

y P Y | px, yq P ϕ for some x P U X ϕ´1Y
(

“ ϕpU X ϕ´1Y q,

and thus ϕ may be regarded as a left total relation on ϕ´1Y ˆ Y . For any subset
U Ă X , U X ϕ´1Y is a subset of ϕ´1Y . By A.1(viii) this gives

U X ϕ´1Y Ă ϕ´1
`

ϕpU X ϕ´1Y q
˘

“ ϕ´1pϕUq,

which proves (iii). Statement (iv) is proved by changing the role of ϕ and ϕ´1.
A useful identity for ϕ´1U is given by

(A.4) ϕ´1V “
␣

x P X | ϕxX V ‰ ∅
(

, V Ă Y.

Indeed,
ϕ´1V “

␣

x P X | py, xq P ϕ´1 for some y P V
(

“
␣

x P X | px, yq P ϕ for some y P V
(

“
␣

x P X | y P ϕx for some y P V
(

“
␣

x P X | ϕxX V ‰ ∅
(

.

As operator ϕ̄ :“ ϕ´1 is also referred to as conjugate operator. Of other crucial
importance is the dual operator related to ϕ. Define,

(A.5) ϕ˚U :“
`

ϕU c
˘c
, U Ă X.

REMARK A.2. In general this definition works for modal operators on Boolean
algebras, not just completely additive operators as discussed in this appendix. For
example int is the dual operator of cl on SetpXq. If cl is defined via ϕ, i.e. Alexan-
drov topology, then the conjugate operator is star, cf. Sect. 2.3.1.

By the same token we define the dual of ϕ´1:

(A.6) ϕ´˚V :“
`

ϕ´1V c
˘c
, V Ă Y.

Useful identities in this setting are:

(v) ϕ˚U c “
`

ϕU
˘c and

`

ϕ˚U
˘c

“ ϕU c for all U Ă X ;
(vi) ϕ´˚V c “

`

ϕ´1V
˘c and

`

ϕ´˚V
˘c

“ ϕ´1V c for all V Ă Y .

As for ϕ´1 there is a convenient characterization of ϕ´˚:

(A.7) ϕ´˚V “
␣

x P X | ϕx Ă V
(

, V Ă Y.

Indeed, by (A.4) and (A.6)

ϕ´˚V “
`

ϕ´1V c
˘c

“
␣

x P X | ϕxX V c ‰ ∅
(c

“
␣

x P X | ϕx Ă V
(

,

which proves (A.7). Note that by the latter characterization we have ϕ´˚V Ă ϕ´1V

for all V Ă Y . This gives:

(vii)
`

ϕ´˚V
˘c

Ą ϕ´˚V c;
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(viii)
`

ϕ´1V
˘c

Ă ϕ´1V c, both for all V Ă Y .

REMARK A.3. The characterizations in (A.4) and (A.7) also hold for ϕ and ϕ˚

by simply replacing ϕ by ϕ´1. This yields the same identities in (vii)-(viii) for ϕ
and ϕ˚.

The modal operators defined by binary relations are completely additive. As a
consequence of the definition of dual the latter are completely multiplicative.

(ix) ϕ˚
`
Ť

iPI Ui

˘

Ą
Ť

iPI ϕ
˚Ui;

(x) ϕ˚
`
Ş

iPI Ui

˘

“
Ş

iPI ϕ
˚Ui, both for arbitrary families tUiuiPI of subsets in

X .

The same holds for ϕ´˚. For example (x) is derived as follows:

ϕ˚
´

č

iPI

Ui

¯

“

´

ϕ
`

č

iPI

Ui

˘c
¯c

“

´

ϕ
`

ď

iPI

U c
i

˘

¯c

“

´

ď

iPI

ϕU c
i

¯c

“
č

iPI

`

ϕU c
i

˘c
“
č

iPI

ϕ˚Ui.

Due to the definition of dual there are additional properties with respect to com-
position in contrast to (iii) and (iv):

(xi) U Ă ϕ´˚
`

ϕU
˘

, for all U Ă X ;
(xii) V Ą ϕ

`

ϕ´˚V
˘

, for all V Ă Y .

To prove (xi) observe that

ϕ´˚
`

ϕU
˘

“
␣

x P X | ϕx Ă ϕU
(

Ą U.

As for (xii) we have:

ϕ
`

ϕ´˚V
˘

“
␣

y P Y | px, yq P ϕ for some x P ϕ´˚V
(

“
␣

y P Y | px, yq P ϕ for some x such that ϕx Ă V
(

Ă V,

i.e. y P ϕx Ă V , which proves (xii).

REMARK A.4. In the special case that ϕ is given by a function f : X Ñ Y , i.e.
ϕ “ tpx, yq | y “ fpxqu, then the opposite relation ϕ´1 is given by: ϕ´1 “ tpy, xq |

y “ fpxqu. As operators we have ϕ´1V and ϕ´˚V and, since tfpxqu is a singleton
set,

ϕ´1V “
␣

x P X | tfpxqu X V ‰ ∅
(

“
␣

x P X | tfpxqu Ă V
(

“ ϕ´˚V.

We write “ f´1V “ ϕ´1V “ ϕ´˚V . For composition this implies by (iv) and (xii):

fpXq X V “ ϕX X V Ă ϕpϕ´1V q “ ϕpϕ´˚V q Ă V,

and therefore fpXq X V Ă fpf´1V q Ă V , which yields identity exactly when f is
surjective. Similarly we have U Ă f´1fpUq.

REMARK A.5. Properties of binary relations imply properties on operators.
For instance an operator that satisfies ϕ2U Ă ϕU for all U Ă X , corresponds to a
transitive relation.
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A.3. Duality

In this section we recall the duality for binary relations on X and operators on
SetpXq. The main source of reference for this section is [27]. The prime example of
a complete and atomic Boolean algebra is the power set of a point set X denoted
by SetpXq. The latter is a Boolean algebra with respect to intersection, union and
complement, and is closed under arbitrary intersections and unions, and every
element is the union of atoms txu, x P X . Let Y be another point set. A Boolean
homomorphism is a lattice homomorphism that preserves the units, i.e. ∅ and X .
A Boolean homomorphism Φ: SetpY q Ñ SetpXq between the complete and atomic
Boolean algebras SetpY q and SetpXq is completely additive if

(A.8) Φ
´

ď

iPI

Ui

¯

“
ď

iPI

ΦUi,

for arbitrary unions
Ť

iPI Ui, Ui Ă X . Since Φ is Boolean the above complete addi-
tivity is equivalent to

(A.9) Φ
´

č

iPI

Ui

¯

“
č

iPI

ΦUi,

for arbitrary intersections
Ş

iPI Ui, Ui Ă X . Related to Φ we define a binary relation
on X ˆ Y :

(A.10) px, yq P ϕ if and only if x P Φtyu.

LEMMA A.6. Φ “ ϕ´1 as operators from SetpY q to SetpXq.

PROOF. By defintion

px, yq P ϕ if and only if py, xq P ϕ´1 if and only if x P ϕ´1tyu.

This implies that Φtyu “ ϕ´1tyu for all y P Y . By the complete additivity of Φ we
have:

ϕ´1V “ ϕ´1
´

ď

yPV

tyu

¯

“
ď

yPV

ϕ´1tyu “
ď

yPV

Φtyu “ ΦV, V Ă Y.

Moreover, ϕ´1∅ “ Φ∅ “ ∅, which completes the proof. □

In the Boolean setting the properties on Φ yield a restriction on ϕ as is dis-
played in the following result.

PROPOSITION A.7. If Φ: SetpY q Ñ SetpXq is completely additive Boolean homo-
morphism, then Φ “ ϕ´1, where

ϕ “
␣

px, fpxq | f : X Ñ Y
(

,

and px, yq P ϕ uniquely determines fpxq “ y. We say that the binary relation ϕ is
functional and we write Φ “ f´1.
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PROOF. For y ‰ y1 we have Φtyu X Φty1u “ Φ
`

tyu X ty1u
˘

“ Φ∅ “ ∅. Also
X “ ΦY “ Φ

`
Ť

tyu
˘

“
Ť

Φtyu, which uses the complete additivity. This implies
that given x P X , then there exists a unique y P Y such that x P Φtyu since the sets
Φtyu are disjoint for distinct y P Y . The latter defines the functional relation ϕ and
fpxq “ y, i.e. the points in ϕ are given by the pairs px, fpxqq. □

REMARK A.8. The definition of ϕ related to Φ in (A.10) is a choice that will be
crucial in our treatment of duality. Some authors use (A.10) to define ϕ´1. Our
choice in consistent with the conventions in the logics liturature, cf. [27]. A more
compelling reason for the above choice is Proposition A.7:

Φ: SetpY q Ñ SetpXq ðñ Φ “ ϕ´1, with ϕ “
␣

px, fpxq | f : X Ñ Y
(

,

which characterizes all completely additive Boolean homomorphisms.

The notion of Boolean homomorphism can be weakened to the notion of modal
operator. Let Φ: SetpY q Ñ SetpXq be a completely additive modal operator, i.e. Φ sat-
isfies Φ∅ “ ∅ and the additivity condition in (A.8). By the definition in (A.10) and
Lemma A.6 every completely additive operator Φ uniquely determines a binary
relation ϕ Ă X ˆ Y . However, since Φ is not necessarily Boolean the relation ϕ is
not necessarily functional. Instead, we obtain any binary relation on X ˆ Y . We
use the notation:

(A.11) Φ “ ϕ´1 : SetpY q Ñ SetpXq, and ϕ “ Φ´1 Ă X ˆ Y.

In particular,

(A.12) pϕ´1q´1 “ ϕ, , and pΦ´1q´1 “ Φ.

The duality between operators and relations explained in this appendix applies to
complete and atomic Boolean algebras. In [38] and [30] this duality is extended
to arbitrary Boolean algebras and a special classes of binary relations — Boolean
relations. In the case of a single Boolean algebra with (modal) operator pB, cq (not
necessarily completely additive) is embedded in a complete and atomic Boolean
algebra with with a completely additive extension of c.





APPENDIX B

Order Theory

In this appendix we outline some of the most prominent concepts of order
theory that are used in this text. Our main references are [15], [59] and [38].

B.1. Posets and pre-orders

In Appendix A we defined binary relations and in particular partial orders
and pre-orders. In the setting of finite sets we will focus here on finite partially
ordered sets, or posets which we will denote by pP,ďq, where P is a finite set and
ď a partial order (or pre-order). If there is no ambiguity on the partial order we
typically denote a finite poset by P, or Q. A function ν : P Ñ Q between finite
posets is order-preserving if p ď q implies that νppq ď νpqq.

The category of finite posets, denoted FPoset, is the category whose objects are
finite posets and whose morphisms are order-preserving maps. The category of
finite pre-orders is denoted by FPreOrd.

Let P be a finite poset. An up-set of P is a subset I Ă P such that if p P U and
p ď q then q P I . For p P P the up-set at p is

İ

§p :“ tq P P : p ď qu which is also called
a principal up-set. Following [42], we denote the collection of up-sets by UpPq. A
down-set of P is a set I Ă P such that if q P D and p ď q then p P I . The down-set at
q is

§

đq :“ tp P P : p ď qu which is called a principal down-set. Following [42], we
denote the collection of down-sets by OpPq.

For p, q P P the interval from p to q, denoted rp, qs, is the set tr P P : p ď r ď qu.
A subset I Ă P is convex if whenever p, q P I then rp, qs Ă I . Every convex set is of
the form α∖ β with α, β P OpPq. We denote the collection of convex sets by CopPq.
Every convex set of P can be obtained as intersection of a down-set and an up-set.
Under a poset morphism the preimage of a convex set is a convex set, cf. [59].

If P is a pre-order, then the equivalence classes are ordered as rps ď rqs if and
only if p ď q. The poset of equivalence class P{„ is called an ordered tessellation for
P. The latter is also referred to as an ordered partition of P

B.2. Lattices

Some texts introduce lattices as a particular type of poset. Instead, we be-
gin with the definition of lattice as an algebraic structure. For a discussion of the
relationship of these two definitions the reader may consult [15, Chapter 2], in
particular [15, Theorem 2.9].
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DEFINITION B.1. A lattice is a set L with the binary operations _,^ : LˆL Ñ L

satisfying the following four axioms:

(i) a^ a “ a_ a “ a for all a P L (idempotence);
(ii) a^ b “ b^ a and a_ b “ b_ a for all a, b P L (commutativity);

(iii) a ^ pb ^ cq “ pa ^ bq ^ c and a _ pb _ cq “ pa _ bq _ c for all a, b, c P L

(associativity);
(iv) a^ pa_ bq “ a_ pa^ bq “ a for all a, b P L (absorption law).

A lattice L has an associated poset structure given by a ď b if a “ a^ b or, equiva-
lently, if b “ a_ b. A lattice L is distributive if it satisfies the additional axiom:

(v) a ^ pb _ cq “ pa ^ bq _ pa ^ cq and a _ pb ^ cq “ pa _ bq ^ pa _ cq for all
a, b, c P L (distributivity);

A lattice L is bounded if there exist neutral elements 0 and 1 that satisfy the following
property:

(vi) 0 ^ a “ 0, 0 _ a “ a, 1 ^ a “ a, 1 _ a “ 1 for all a P L.

A complemented lattice, also called a Boolean algebra, is a bounded lattice (with
least element 0 and greatest element 1), in which every element a has a comple-
ment, i.e. an element b such that a_ b “ 1 and a^ b “ 0.

A lattice homomorphism f : L Ñ M is a map such that if a, b P L then fpa^bq “

fpaq^fpbq and fpa_bq “ fpaq_fpbq. If L and M are bounded lattices then we also
require that fp0q “ 0 and fp1q “ 1. In particular, we are interested in finite lattices.
Every finite lattice is bounded. A subset K Ă L is a sublattice of L if a, b P K implies
that a_b P K and a^b P K. For sublattices of bounded lattices we impose the extra
condition that 0, 1 P K. The category of finite distributive lattices, denoted FDLat, is
the category whose objects are finite distributive lattices and whose morphisms
are lattice homomorphisms.

An element a P L is join-irreducible if it has a unique immediate predecessor;
given a join-irreducible a we denote its unique predecessor by ađ. The set of join-
irreducible elements of L is denoted by JpLq. The join-irreducible elements form a
poset pJpLq,ďq, where the order ď is the restriction of the partial order of L.

B.3. Birkhoff duality

Given a finite distributive lattice L, JpLq is a poset with respect to set-inclusion.
Conversely, given a finite poset pP,ďq the set of downsets OpPq is a bounded dis-
tributive lattice under ^ “ X and _ “ Y. The following theorem often goes under
the moniker ‘Birkhoff’s Representation Theorem’ and the duality will be referred
to as Birkhoff duality.

THEOREM B.2 (cf. [59], Theorem 10.4 and [40]). The applications L ñ JpLq and
P ñ OpPq are contravariant functors from FDLat to FPoset and from FPoset to FDLat
respectively. A lattice homomorphism h : K Ñ L is dual to an order-preserving map
Jphq : JpLq Ñ JpKq and an order-preserving map ν : P Ñ Q is dual to a lattice homo-
morphism Opνq : OpQq Ñ OpPq given by the formulas This may be represent this via the
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following diagram:

K JpKq

L JpLq

h
J

Jphq

P OpPq

Q OpQq

ν
O

Opνq

Jphqpaq “ minh´1
`İ

§a
˘

, where a P JpLq,

Opνqpαq “ ν´1pαq, where α P OpQq,

respectively. Furthermore,

L – OpJpLqq and P – JpOpPqq.

The pair of contravariant functors O and J called the Birkhoff transforms. Given
ν : P Ñ Q we say that Opνq is the Birkhoff dual to ν. Similarly, for h : K Ñ L we say
that Jphq is the Birkhoff dual to h. A lattice homomorphism h is injective if and only
if Jphq is surjective, and h is surjective if and only if Jphq is an order-embedding.

REMARK B.3. If L “ OpPq and K “ OpQq then the homomorphism Jphq : P Ñ Q

is given by the formula Jphqppq “ min
␣

q P Q | p P h
`
§

đq
˘(

, cf. [15, Thm. 5.19].





APPENDIX C

Grading, filtering and differential modules

In this appendix we explain gradings and filterings in the context order the-
ory applied to sets and modules In this setting we discuss the duality between
gradings and filterings in the spirits of Birkhoff’s representation theorem.

C.1. P-gradings and OpPq-filterings

We start with the definitions of grading and filtering on a set X which carry
over to the setting of modules in Appendix C.2.

DEFINITION C.1. An ordered tessellation, or ordered partition of a setX is a poset
pT,ďq consisting of non-empty subsets T Ă X , such that

(i) T X T 1 “ ∅ for all distinct T, T 1 P T;
(ii)

Ť

TPT T “ X .

One can also consider more general binary relations on tessellations such as pre-
orders.

Given the set of down-sets OpTq in pT,ďq we define the lattice:

NpTq :“
!

N Ă X | N “
ď

TPα

T, α P OpTq

)

,

which is a finite sublattice of SetpXq with binary operations X and Y.

DEFINITION C.2. A finite sublattice N Ă SetpXq is called a filtering1 on X .

The sublattice NpTq is a filtering on X , constructed from T. If we start with a
filtering N Ă SetpXq we construct an ordered tessellation from N as follows. For
N P JpNq define T :“ N ∖ Nđ, where Nđ is the unique immediate predecessor
of N in the lattice N. From [44] it follows that for distinct N,N 1 P JpNq, then (i)
T, T 1 ‰ ∅, (ii) T X T 1 “ ∅, and (iii)

Ť

NPJpNqN ∖ Nđ “ X . We order the tiles T
as: T ď T 1 if and only if N Ď N 1. This makes

`

TpNq,ď
˘

– pJpNq,Ăq an ordered
tessellation of X . By Birkhoff duality we conclude:

N
`

TpNq
˘

“ N and T
`

NpTq
˘

“ T.

Filterings regarded as finite sublattices of subsets in X provide an algebraic point
of view for the construction ordered tessellations of X . An OpPq-filtering on X is a

1We use term filtering for an arbitrary sublattice of subsets in SetpXq as opposed to filtration which
is commonly used for a linearly ordered sublattice.
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lattice homomorphism
flt: OpPq Ñ SetpXq,

and the pair pX,fltq is called an OpPq-filtered set. The image N Ă SetpXq of flt is
a filtering on X . Common notation for an OpPq-filtering is: α ÞÑ FαX . Given
an OpPq-filtering flt: OpPq Ñ SetpXq, with image N, then Birkhoff duality as de-
scribed above yields the order-embedding ι : TpNq ãÑ P of the induced ordered
tessellation:

(C.1) T
ι

ÞÝÑ min
!

p P P | T Ă FÓpX
)

.

The latter defines a discretization map (not necessarily surjective, nor continuous)
grd: X Ñ pP,ďq via:

grdpxq :“ p, x P ι´1ppq.

The discretization map grd is called a P-grading on X and the subsets GpX “

grd´1p yield a decomposition

(C.2) X “
ď

pPP

GpX,

which we refer to as a P-graded decomposition of X . The set GpX is also called
the subsets of homogeneous elements of degree p. The non-empty sets GpX form a
ordered tessellation of X . In this construction the P-grading grd is induced by
the filtering flt. In general any discretization map grd: X Ñ P yields a P-graded
decomposition of X . Given a P-grading grd: X Ñ P, Birkhoff duality implies a
lattice homomorphism grd´1 : OpPq ↠ OpTq. The formula

(C.3) flt: OpPq Ñ NpTq, α ÞÑ FαX :“
ď

␣

T | T P grd´1
pαq

(

,

yields an OpPq-filtering on X , which establishes teh duality between P-gradings
and OpPq-filterings of X .

C.2. P-graded and OpPq-filtered modules

In the spirit of gradings and filterings of a set X we can do the same for R-
modules. Let C be an R-module, or module for short, over a ring R. The sub-
module of C are denoted by SubC with binary operations X and ` (span). An
OpPq-filtering on C is a lattice homomorphism

flt: OpPq Ñ SubC,

and the pair pC,fltq is called an OpPq-filtered module. Common notation for an
OpPq-filtering is α ÞÑ FαC. For an OpPq-filtering OpPq ↠ SubC define the external
direct sum

(C.4) GrC “
à

αPJpOpPqq

FαC

FαđC
–
à

pPP

FÓpC

FÓpđC
,

where we use the fact that FαC{FβC – Fα1C{Fβ1C for all α ∖ β “ α1 ∖ β1. The
module GrC is the associated graded module, cf. [36] and [58]. In general GrC is not
isomorphic to C. If the subquotients GpC are free, then C is a free module and
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GrC – C. This always holds if C is K-vector space. The decomposition in (C.4) is
called a P-graded decomposition (of GrC). The subquotients GpC :“ FαC{FαđC are
called factors and since flt is not necessarily injective some factors FαC{FαđC may
be trivial, i.e. the zero module. In general a decomposition

(C.5) C “
à

pPP

GpC, GpC “
FÓpC

FÓpđC
,

is called a P-graded decomposition of C. The element in GpC are called homo-
geneous elements of degree p. As before GpC may be trivial for some p. Factors
are also well-defined for any convex set β ∖ α and are denoted by Gβ∖αC :“

FαC{FβC.
A P-graded moduleC “

À

pPPGpC yields an OpPq-filtered module in a canon-
ical way:

(C.6) flt: OpPq Ñ SubC, α ÞÑ FαV :“
à

pPα

GpC,

which is denoted by pC,fltq. If C is a P-graded module then GrC is defined as
before via the induces OpPq-filtered module and

GrC – C,

which establishes one of the dualities for arbitrary modules.

C.3. Differential modules

The concept of P-grading can be applied to chain complexes and differen-
tial modules/vector spaces. A differential module is a pair pC,dq where C is an
R-module and d: C Ñ C is an endomorphism satisfying d2 “ 0. If C is a vector
space, then we refer to pC, dq as a differential vector space. We refer to the elements in
C as chains. The chains in C for which d vanishes are called cycles and are denoted
by ZpC, dq Ă C. Chains in the range of d are called boundaries and are denoted
by BpC, dq Ă Z. The homology of pC,dq is define as HpC, dq :“ ZpCq{BpCq. A
homomorphism h : C Ñ C 1 of R-modules is a D-homomorphism if d1h “ hd.

DEFINITION C.3. A P-graded differential module2
pC, dq is given by an P-graded

module C “
À

pPαGpC such that

(C.7) dFαC Ă FαC, @α P OpPq,

which is equivalent to saying that d is OpPq-filtered. A P-graded differential mod-
ule C is strict if d|GpC “ 0 for all p P P. More generally an OpPq-filtered differential
module pC, dq is given by a OpPq-filtered module C equipped with an OpPq-filtered
differential, i.e. d satisfies (C.7).

2A chain complex pC,dq is an N-graded, or Z-graded differential module with the differential d
a degree ´1 map, i.e. dFÓpC Ă FÓpp´1qC. In the literature P-graded differential modules are also
simply called differential graded modules.
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The differential d on a P-graded module may be regarded as upper-triangular
with entries dpp, qq : GqC Ñ GpC due (C.7). The latter implies

dpp, qq ‰ 0, ùñ p ď q.

As before a P-graded differential module also yields an OpPq-filtering on pC,dq

making the latter an OpPq-filtered differential module. The converse is not true in
general. For example is we use field coefficients then an OpPq-filtered differen-
tial module is isomorphic to a P-graded differential module as described in the
previous section.

An OpPq-filtered D-homomorphism between P-graded differential modules is a
D-homomorphism h : pC, dq Ñ pC 1,d1q, such that h : C Ñ C 1 is an OpPq-filtered
homomorphism, i.e. h

`

FαC
˘

Ă FαC for all α P OpPq.

REMARK C.4. In our treatment of graded and filtered differential modules
we assume that the differential is filtered as well as the homomorphisms. This
allows more flexibility. For example for a (co)chain complex the differential is
homogeneous of degree ˘1. This implies that the differential is also filtered. The
converse is not true.
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